{"title":"Possible crosstalk between the Arabidopsis TSPO-related protein and the transcription factor WRINKLED1","authors":"","doi":"10.1016/j.biochi.2024.05.011","DOIUrl":null,"url":null,"abstract":"<div><p><span>This study uncovers a regulatory interplay between WRINKLED1 (WRI1), a master transcription factor for glycolysis and lipid biosynthesis<span>, and Translocator Protein (TSPO) expression in </span></span><span><span>Arabidopsis thaliana</span></span> seeds. We identified potential WRI1-responsive elements upstream of AtTSPO through bioinformatics, suggesting WRI1's involvement in regulating TSPO expression. Our analyses showed a significant reduction in AtTSPO levels in <em>wri1</em><span> mutant seeds compared to wild type, establishing a functional link between WRI1 and TSPO. This connection extends to the coordination of seed development and lipid metabolism, with both WRI1 and AtTSPO levels decreasing post-imbibition, indicating their roles in seed physiology. Further investigations into TSPO's impact on fatty acid synthesis<span> revealed that TSPO misexpression alters WRI1's post-translational modifications and significantly enhances seed oil content. Additionally, we noted a decrease in key reserve proteins, including 12 S globulin and oleosin 1, in seeds with TSPO misexpression, suggesting a novel energy storage strategy in these lines. Our findings reveal a sophisticated network involving WRI1 and AtTSPO, highlighting their crucial contributions to seed development, lipid metabolism, and the modulation of energy storage mechanisms in Arabidopsis.</span></span></p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"224 ","pages":"Pages 62-70"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300908424001056","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study uncovers a regulatory interplay between WRINKLED1 (WRI1), a master transcription factor for glycolysis and lipid biosynthesis, and Translocator Protein (TSPO) expression in Arabidopsis thaliana seeds. We identified potential WRI1-responsive elements upstream of AtTSPO through bioinformatics, suggesting WRI1's involvement in regulating TSPO expression. Our analyses showed a significant reduction in AtTSPO levels in wri1 mutant seeds compared to wild type, establishing a functional link between WRI1 and TSPO. This connection extends to the coordination of seed development and lipid metabolism, with both WRI1 and AtTSPO levels decreasing post-imbibition, indicating their roles in seed physiology. Further investigations into TSPO's impact on fatty acid synthesis revealed that TSPO misexpression alters WRI1's post-translational modifications and significantly enhances seed oil content. Additionally, we noted a decrease in key reserve proteins, including 12 S globulin and oleosin 1, in seeds with TSPO misexpression, suggesting a novel energy storage strategy in these lines. Our findings reveal a sophisticated network involving WRI1 and AtTSPO, highlighting their crucial contributions to seed development, lipid metabolism, and the modulation of energy storage mechanisms in Arabidopsis.
期刊介绍:
Biochimie publishes original research articles, short communications, review articles, graphical reviews, mini-reviews, and hypotheses in the broad areas of biology, including biochemistry, enzymology, molecular and cell biology, metabolic regulation, genetics, immunology, microbiology, structural biology, genomics, proteomics, and molecular mechanisms of disease. Biochimie publishes exclusively in English.
Articles are subject to peer review, and must satisfy the requirements of originality, high scientific integrity and general interest to a broad range of readers. Submissions that are judged to be of sound scientific and technical quality but do not fully satisfy the requirements for publication in Biochimie may benefit from a transfer service to a more suitable journal within the same subject area.