{"title":"High prevalence of copy number variations in the Japanese participants with suspected MODY","authors":"Satoshi Tanaka, Hiroyuki Akagawa, Kenkou Azuma, Sayaka Higuchi, Atsushi Ujiie, Koshi Hashimoto, Naoko Iwasaki","doi":"10.1111/cge.14544","DOIUrl":null,"url":null,"abstract":"<p>Maturity-Onset Diabetes of the Young (MODY) is a diabetes mellitus subtype caused by a single gene. The detection rate of the responsible gene is 27% in the United Kingdom, indicating that the causative gene remains unknown in the majority of clinically diagnosed MODY cases. To improve the detection rate, we applied comprehensive genetic testing using whole exome sequencing (WES) followed by Multiplex Ligation-dependent Probe Amplification (MLPA) and functional analyses. Twenty-one unrelated Japanese participants with MODY were enrolled in the study. To detect copy number variations (CNVs), WES was performed first, followed by MLPA analysis for participants who were negative on the basis of WES. Undetermined variants were analyzed according to their functional properties. WES identified 7 pathogenic and 3 novel likely pathogenic variants in the 21 participants. Functional analyses revealed that 1 in 3 variants was pathogenic. MLPA analysis applied to the remaining 13 undetermined samples identified 4 cases with pathogenic CNVs: 3 in <i>HNF4A</i> and 1 in <i>HNF1B</i>. Pathogenic variants were identified in 12 participants (12/21, 57.1%) – relatively high rate reported to date. Notably, one-third of the participants had CNVs in <i>HNF4A</i> or <i>HNF1B</i>, indicating a limitation of WES-only screening.</p>","PeriodicalId":10354,"journal":{"name":"Clinical Genetics","volume":"106 3","pages":"293-304"},"PeriodicalIF":2.9000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Genetics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cge.14544","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Maturity-Onset Diabetes of the Young (MODY) is a diabetes mellitus subtype caused by a single gene. The detection rate of the responsible gene is 27% in the United Kingdom, indicating that the causative gene remains unknown in the majority of clinically diagnosed MODY cases. To improve the detection rate, we applied comprehensive genetic testing using whole exome sequencing (WES) followed by Multiplex Ligation-dependent Probe Amplification (MLPA) and functional analyses. Twenty-one unrelated Japanese participants with MODY were enrolled in the study. To detect copy number variations (CNVs), WES was performed first, followed by MLPA analysis for participants who were negative on the basis of WES. Undetermined variants were analyzed according to their functional properties. WES identified 7 pathogenic and 3 novel likely pathogenic variants in the 21 participants. Functional analyses revealed that 1 in 3 variants was pathogenic. MLPA analysis applied to the remaining 13 undetermined samples identified 4 cases with pathogenic CNVs: 3 in HNF4A and 1 in HNF1B. Pathogenic variants were identified in 12 participants (12/21, 57.1%) – relatively high rate reported to date. Notably, one-third of the participants had CNVs in HNF4A or HNF1B, indicating a limitation of WES-only screening.
期刊介绍:
Clinical Genetics links research to the clinic, translating advances in our understanding of the molecular basis of genetic disease for the practising clinical geneticist. The journal publishes high quality research papers, short reports, reviews and mini-reviews that connect medical genetics research with clinical practice.
Topics of particular interest are:
• Linking genetic variations to disease
• Genome rearrangements and disease
• Epigenetics and disease
• The translation of genotype to phenotype
• Genetics of complex disease
• Management/intervention of genetic diseases
• Novel therapies for genetic diseases
• Developmental biology, as it relates to clinical genetics
• Social science research on the psychological and behavioural aspects of living with or being at risk of genetic disease