Preparation of (S)-epichlorohydrin using a novel halohydrin dehalogenase by selective conformation adjustment.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Biotechnology Letters Pub Date : 2024-08-01 Epub Date: 2024-05-11 DOI:10.1007/s10529-024-03479-y
Xiao-Jian Zhang, Meng-Yu Huang, Xin-Xin Peng, Min Cao, Han-Zhong Deng, Yi-Chuan Gong, Xiao-Ling Tang, Zhi-Qiang Liu, Yu-Guo Zheng
{"title":"Preparation of (S)-epichlorohydrin using a novel halohydrin dehalogenase by selective conformation adjustment.","authors":"Xiao-Jian Zhang, Meng-Yu Huang, Xin-Xin Peng, Min Cao, Han-Zhong Deng, Yi-Chuan Gong, Xiao-Ling Tang, Zhi-Qiang Liu, Yu-Guo Zheng","doi":"10.1007/s10529-024-03479-y","DOIUrl":null,"url":null,"abstract":"<p><p>Chiral epichlorohydrin (ECH) is an attractive intermediate for chiral pharmaceuticals and chemicals preparation. The asymmetric synthesis of chiral ECH using 1,3-dicholoro-2-propanol (1,3-DCP) catalyzed by a haloalcohol dehalogenase (HHDH) was considered as a feasible approach. However, the reverse ring opening reaction caused low optical purity of chiral ECH, thus severely restricts the industrial application of HHDHs. In the present study, a novel selective conformation adjustment strategy was developed with an engineered HheC<sub>PS</sub> to regulate the kinetic parameters of the forward and reverse reactions, based on site saturation mutation and molecular simulation analysis. The HheC<sub>PS</sub> mutant E85P was constructed with a markable change in the conformation of (S)-ECH in the substrate pocket and a slight impact on the interaction between 1,3-DCP and the enzyme, which resulted in the kinetic deceleration of the reverse reactions. Compared with HheC<sub>PS</sub>, the catalytic efficiency (k<sub>cat(S)-ECH</sub>/K<sub>m(S)-ECH</sub>) of the reversed reaction dropped to 0.23-fold (from 0.13 to 0.03 mM<sup>-1</sup> s<sup>-1</sup>), while the catalytic efficiency (k<sub>cat(1,3-DCP)</sub>/K<sub>m(1,3-DCP)</sub>) of the forward reaction only reduced from 0.83 to 0.71 mM<sup>-1</sup> s<sup>-1</sup>. With 40 mM 1,3-DCP as substrate, HheC<sub>PS</sub> E85P catalyzed the synthesis of (S)-ECH with the yield up to 55.35% and the e.e. increased from 92.54 to >99%. Our work provided an effective approach for understanding the stereoselective catalytic mechanism as well as the green manufacturing of chiral epoxides.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03479-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chiral epichlorohydrin (ECH) is an attractive intermediate for chiral pharmaceuticals and chemicals preparation. The asymmetric synthesis of chiral ECH using 1,3-dicholoro-2-propanol (1,3-DCP) catalyzed by a haloalcohol dehalogenase (HHDH) was considered as a feasible approach. However, the reverse ring opening reaction caused low optical purity of chiral ECH, thus severely restricts the industrial application of HHDHs. In the present study, a novel selective conformation adjustment strategy was developed with an engineered HheCPS to regulate the kinetic parameters of the forward and reverse reactions, based on site saturation mutation and molecular simulation analysis. The HheCPS mutant E85P was constructed with a markable change in the conformation of (S)-ECH in the substrate pocket and a slight impact on the interaction between 1,3-DCP and the enzyme, which resulted in the kinetic deceleration of the reverse reactions. Compared with HheCPS, the catalytic efficiency (kcat(S)-ECH/Km(S)-ECH) of the reversed reaction dropped to 0.23-fold (from 0.13 to 0.03 mM-1 s-1), while the catalytic efficiency (kcat(1,3-DCP)/Km(1,3-DCP)) of the forward reaction only reduced from 0.83 to 0.71 mM-1 s-1. With 40 mM 1,3-DCP as substrate, HheCPS E85P catalyzed the synthesis of (S)-ECH with the yield up to 55.35% and the e.e. increased from 92.54 to >99%. Our work provided an effective approach for understanding the stereoselective catalytic mechanism as well as the green manufacturing of chiral epoxides.

Abstract Image

利用新型卤代卤素脱卤酶通过选择性构象调整制备 (S)-环氧氯丙烷。
手性环氧氯丙烷(ECH)是一种极具吸引力的手性医药和化学品制备中间体。在卤代醇脱卤酶(HHDH)的催化下,使用 1,3-二氯丙醇(1,3-DCP)不对称合成手性环氧氯丙烷被认为是一种可行的方法。然而,反向开环反应导致手性 ECH 的光学纯度较低,从而严重限制了 HHDH 的工业应用。在本研究中,基于位点饱和突变和分子模拟分析,开发了一种新型的选择性构象调整策略,用工程化的 HheCPS 来调节正反反应的动力学参数。所构建的 HheCPS 突变体 E85P 在底物口袋中的 (S)-ECH 构象发生了明显变化,并对 1,3-DCP 与酶的相互作用产生了轻微影响,从而导致反向反应的动力学减速。与 HheCPS 相比,反向反应的催化效率(kcat(S)-ECH/Km(S)-ECH)下降了 0.23 倍(从 0.13 mM-1 s-1 降至 0.03 mM-1 s-1),而正向反应的催化效率(kcat(1,3-DCP)/Km(1,3-DCP))仅从 0.83 mM-1 s-1 降至 0.71 mM-1 s-1。以 40 mM 1,3-DCP 为底物,HheCPS E85P 催化合成 (S)-ECH 的产率高达 55.35%,e.e. 从 92.54% 提高到 >99%。我们的工作为了解立体选择性催化机理以及手性环氧化物的绿色制造提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology Letters
Biotechnology Letters 工程技术-生物工程与应用微生物
CiteScore
5.90
自引率
3.70%
发文量
108
审稿时长
1.2 months
期刊介绍: Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them. All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included. Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields. The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories. Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信