Amphiregulin secreted by umbilical cord multipotent stromal cells protects against ferroptosis of macrophages via the activating transcription factor 3-CD36 axis to alleviate endometrial fibrosis.

IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
STEM CELLS Pub Date : 2024-08-01 DOI:10.1093/stmcls/sxae035
Jiali Wang, Jingman Li, Shuangan Wang, Yuchen Pan, Jingjing Yang, Lijie Yin, Huan Dou, Yayi Hou
{"title":"Amphiregulin secreted by umbilical cord multipotent stromal cells protects against ferroptosis of macrophages via the activating transcription factor 3-CD36 axis to alleviate endometrial fibrosis.","authors":"Jiali Wang, Jingman Li, Shuangan Wang, Yuchen Pan, Jingjing Yang, Lijie Yin, Huan Dou, Yayi Hou","doi":"10.1093/stmcls/sxae035","DOIUrl":null,"url":null,"abstract":"<p><p>Endometrium fibrosis is the leading cause of uterine infertility. Macrophages participated in the occurrence and development of endometrial fibrosis. We previously reported that human umbilical cord multipotent stromal cells (hUC-MSCs) exerted their therapeutic effect in a macrophage-dependent manner in endometrial fibrosis. However precise mechanisms by which hUC-MSCs may influence macrophages in endometrial fibrosis remain largely unexplored. Here, we demonstrated that abnormal iron and lipid metabolism occurred in patients with intrauterine adhesions (IUA) and murine models. Ferroptosis has been proven to contribute to the progression of fibrotic diseases. Our results revealed that pharmacological activation of ferroptosis by Erastin aggravated endometrial fibrosis, while inhibition of ferroptosis by Ferrostatin-1 ameliorated endometrial fibrosis in vivo. Moreover, ferroptosis of macrophages was significantly upregulated in endometria of IUA murine models. Of note, transcriptome profiles revealed that CD36 gene expression was significantly increased in patients with IUA and immunofluorescence analysis showed CD36 protein was mainly located in macrophages. Silencing CD36 in macrophages could reverse cell ferroptosis. Dual luciferase reporter assay revealed that CD36 was the direct target of activation transcription factor 3 (ATF3). Furthermore, through establishing coculture system and IUA murine models, we found that hUC-MSCs had a protective role against macrophage ferroptosis and alleviated endometrial fibrosis related to decreased CD36 and ATF3. The effect of hUC-MSCs on macrophage ferroptosis was attributed to the upregulation of amphiregulin (AREG). Our data highlighted that macrophage ferroptosis occurred in endometrial fibrosis via the ATF3-CD36 pathway and hUC-MSCs protected against macrophage ferroptosis to alleviate endometrial fibrosis via secreting AREG. These findings provided a potential target for therapeutic implications of endometrial fibrosis.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"763-776"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxae035","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Endometrium fibrosis is the leading cause of uterine infertility. Macrophages participated in the occurrence and development of endometrial fibrosis. We previously reported that human umbilical cord multipotent stromal cells (hUC-MSCs) exerted their therapeutic effect in a macrophage-dependent manner in endometrial fibrosis. However precise mechanisms by which hUC-MSCs may influence macrophages in endometrial fibrosis remain largely unexplored. Here, we demonstrated that abnormal iron and lipid metabolism occurred in patients with intrauterine adhesions (IUA) and murine models. Ferroptosis has been proven to contribute to the progression of fibrotic diseases. Our results revealed that pharmacological activation of ferroptosis by Erastin aggravated endometrial fibrosis, while inhibition of ferroptosis by Ferrostatin-1 ameliorated endometrial fibrosis in vivo. Moreover, ferroptosis of macrophages was significantly upregulated in endometria of IUA murine models. Of note, transcriptome profiles revealed that CD36 gene expression was significantly increased in patients with IUA and immunofluorescence analysis showed CD36 protein was mainly located in macrophages. Silencing CD36 in macrophages could reverse cell ferroptosis. Dual luciferase reporter assay revealed that CD36 was the direct target of activation transcription factor 3 (ATF3). Furthermore, through establishing coculture system and IUA murine models, we found that hUC-MSCs had a protective role against macrophage ferroptosis and alleviated endometrial fibrosis related to decreased CD36 and ATF3. The effect of hUC-MSCs on macrophage ferroptosis was attributed to the upregulation of amphiregulin (AREG). Our data highlighted that macrophage ferroptosis occurred in endometrial fibrosis via the ATF3-CD36 pathway and hUC-MSCs protected against macrophage ferroptosis to alleviate endometrial fibrosis via secreting AREG. These findings provided a potential target for therapeutic implications of endometrial fibrosis.

脐带多能基质细胞分泌的两性胰岛素可通过活化转录因子 3-CD36 轴防止巨噬细胞铁突变,从而缓解子宫内膜纤维化。
子宫内膜纤维化是导致子宫性不孕的主要原因。巨噬细胞参与了子宫内膜纤维化的发生和发展。我们曾报道,人脐带多能基质细胞(hUC-MSCs)以巨噬细胞依赖的方式对子宫内膜纤维化发挥治疗作用。然而,hUC-间充质干细胞在子宫内膜纤维化中影响巨噬细胞的确切机制在很大程度上仍未得到探索。在这里,我们证明了宫腔内粘连(IUA)患者和小鼠模型中出现了铁和脂质代谢异常。铁代谢异常已被证实有助于纤维化疾病的进展。我们的研究结果表明,通过药物激活 Erastin 可加重子宫内膜纤维化,而通过抑制 Ferrostatin-1 可改善体内子宫内膜纤维化。此外,在 IUA 小鼠模型的子宫内膜中,巨噬细胞的嗜铁功能明显上调。值得注意的是,转录组图谱显示,IUA 患者的 CD36 基因表达明显增加,免疫荧光分析显示 CD36 蛋白主要位于巨噬细胞中。沉默巨噬细胞中的 CD36 可以逆转细胞的铁突变。双荧光素酶报告实验显示,CD36是活化转录因子3(ATF3)的直接靶标。此外,通过建立共培养系统和 IUA 小鼠模型,我们发现 hUC 间充质干细胞对巨噬细胞铁嗜性有保护作用,并能减轻子宫内膜纤维化,这与 CD36 和 ATF3 的减少有关。hUC-间充质干细胞对巨噬细胞铁嗜性的影响归因于两性胰蛋白酶(AREG)的上调。我们的数据突出表明,子宫内膜纤维化中的巨噬细胞铁嗜性是通过ATF3-CD36途径发生的,而hUC-间充质干细胞通过分泌AREG保护巨噬细胞铁嗜性,从而缓解子宫内膜纤维化。这些发现为子宫内膜纤维化的治疗提供了潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
STEM CELLS
STEM CELLS 医学-生物工程与应用微生物
CiteScore
10.30
自引率
1.90%
发文量
104
审稿时长
3 months
期刊介绍: STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology. STEM CELLS covers: Cancer Stem Cells, Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells, Regenerative Medicine, Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics, Tissue-Specific Stem Cells, Translational and Clinical Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信