PEG modification increases thermostability and inhibitor resistance of Bst DNA polymerase.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mengxia Yang, Zhixing Li, Hongjie Ren, Chen Lu, Xinyu Gao, Henghao Xu
{"title":"PEG modification increases thermostability and inhibitor resistance of Bst DNA polymerase.","authors":"Mengxia Yang, Zhixing Li, Hongjie Ren, Chen Lu, Xinyu Gao, Henghao Xu","doi":"10.1093/bbb/zbae059","DOIUrl":null,"url":null,"abstract":"<p><p>Polyethylene glycol modification (PEGylation) is a widely used strategy to improve the physicochemical properties of various macromolecules, especially protein drugs. However, its application in enhancing the performance of enzymes for molecular biology remains underexplored. This study explored the PEGylation of Bst DNA polymerase, determining optimal modification reaction conditions. In comparison to the unmodified wild-type counterpart, the modified Bst DNA polymerase exhibited significantly improved activity, thermal stability, and inhibitor tolerance during loop-mediated isothermal amplification. When applied for the detection of Salmonella in crude samples, the modified enzyme demonstrated a notably accelerated reaction rate. Therefore, PEGylation emerges as a viable strategy for refining DNA polymerases, helping in the development of novel molecular diagnostic reagents.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae059","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polyethylene glycol modification (PEGylation) is a widely used strategy to improve the physicochemical properties of various macromolecules, especially protein drugs. However, its application in enhancing the performance of enzymes for molecular biology remains underexplored. This study explored the PEGylation of Bst DNA polymerase, determining optimal modification reaction conditions. In comparison to the unmodified wild-type counterpart, the modified Bst DNA polymerase exhibited significantly improved activity, thermal stability, and inhibitor tolerance during loop-mediated isothermal amplification. When applied for the detection of Salmonella in crude samples, the modified enzyme demonstrated a notably accelerated reaction rate. Therefore, PEGylation emerges as a viable strategy for refining DNA polymerases, helping in the development of novel molecular diagnostic reagents.

PEG 修饰提高了 Bst DNA 聚合酶的热稳定性和抗抑制剂性。
聚乙二醇改性(PEGylation)是一种广泛应用的策略,可改善各种大分子,尤其是蛋白质药物的理化性质。然而,其在提高分子生物学酶性能方面的应用仍未得到充分探索。本研究探讨了 Bst DNA 聚合酶的 PEG 化,确定了最佳的修饰反应条件。与未修饰的野生型相比,修饰后的 Bst DNA 聚合酶在环介导等温扩增(LAMP)过程中的活性、热稳定性和对抑制剂的耐受性都有显著提高。当用于检测粗样品中的沙门氏菌时,改良酶的反应速度明显加快。因此,PEG 化是改进 DNA 聚合酶的一种可行策略,有助于新型分子诊断试剂的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信