Generalized fractional derivatives generated by Dickman subordinator and related stochastic processes

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Neha Gupta, Arun Kumar, Nikolai Leonenko, Jayme Vaz
{"title":"Generalized fractional derivatives generated by Dickman subordinator and related stochastic processes","authors":"Neha Gupta, Arun Kumar, Nikolai Leonenko, Jayme Vaz","doi":"10.1007/s13540-024-00289-x","DOIUrl":null,"url":null,"abstract":"<p>In this article, convolution-type fractional derivatives generated by Dickman subordinator and inverse Dickman subordinator are discussed. The Dickman subordinator and its inverse are generalizations of stable and inverse stable subordinators, respectively. The series representations of densities of the Dickman subordinator and inverse Dickman subordinator are also obtained, which could be helpful for computational purposes. Moreover, the space and time-fractional Poisson-Dickman processes, space-fractional Skellam Dickman process and non-homogenous Poisson-Dickman process are introduced and their main properties are studied.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00289-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, convolution-type fractional derivatives generated by Dickman subordinator and inverse Dickman subordinator are discussed. The Dickman subordinator and its inverse are generalizations of stable and inverse stable subordinators, respectively. The series representations of densities of the Dickman subordinator and inverse Dickman subordinator are also obtained, which could be helpful for computational purposes. Moreover, the space and time-fractional Poisson-Dickman processes, space-fractional Skellam Dickman process and non-homogenous Poisson-Dickman process are introduced and their main properties are studied.

Abstract Image

由 Dickman 下位器和相关随机过程生成的广义分数导数
本文讨论了由 Dickman 从属器和逆 Dickman 从属器产生的卷积型分数导数。Dickman 从属器及其逆从属器分别是稳定从属器和逆稳定从属器的广义。同时还得到了 Dickman 从属器和逆 Dickman 从属器的密度序列表示,这对计算很有帮助。此外,还介绍了空间和时间分数泊松-迪克曼过程、空间分数斯凯拉姆-迪克曼过程和非同质泊松-迪克曼过程,并研究了它们的主要性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信