Swirl flow stability: thermodynamic analysis and experiments

IF 1.9 4区 工程技术 Q3 MECHANICS
František Maršík, Zdeněk Trávníček, Bernhard Weigand, Florian Seibold, Zuzana Antošová
{"title":"Swirl flow stability: thermodynamic analysis and experiments","authors":"František Maršík,&nbsp;Zdeněk Trávníček,&nbsp;Bernhard Weigand,&nbsp;Florian Seibold,&nbsp;Zuzana Antošová","doi":"10.1007/s00161-024-01303-6","DOIUrl":null,"url":null,"abstract":"<div><p>The current paper presents a theoretical analysis of swirl flow stability, both inside a tube (vortex tube) and in a free annular swirl flow. The starting concept is the study of the evolution of velocity and temperature fluctuations. Methods of non-equilibrium thermodynamics are used to describe the magnitude of fluctuations and their properties. The important role of the total enthalpy follows from a variational analysis. Moreover, the thermodynamic criterion of the stability is formulated using the total enthalpy, and compared with experiments, numerical results and classical Rayleigh theory support its applicability. It was shown that the solid body vortex is at the margin of stability, which is experimentally observed. Analogously, the potential vortex is by the thermodynamic criterion stable; however, by the Rayleigh criteria it is on the onset of stability. The classical Taylor experiment of flow between two rotating cylinders is analysed from the point of view of this criterion. These results are underlined by swirl tube experiments at the Institute of Aerospace Thermodynamics at Stuttgart University and the annular nozzle experiments performed in the Institute of Thermomechanics CAS in Prague. Both independent experiments confirm the transformation of the initial annular vortex into a stable potential-type vortex. The results of this theory can also be used to explain the exceptional stability of tropical cyclones.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"36 4","pages":"891 - 910"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00161-024-01303-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-024-01303-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The current paper presents a theoretical analysis of swirl flow stability, both inside a tube (vortex tube) and in a free annular swirl flow. The starting concept is the study of the evolution of velocity and temperature fluctuations. Methods of non-equilibrium thermodynamics are used to describe the magnitude of fluctuations and their properties. The important role of the total enthalpy follows from a variational analysis. Moreover, the thermodynamic criterion of the stability is formulated using the total enthalpy, and compared with experiments, numerical results and classical Rayleigh theory support its applicability. It was shown that the solid body vortex is at the margin of stability, which is experimentally observed. Analogously, the potential vortex is by the thermodynamic criterion stable; however, by the Rayleigh criteria it is on the onset of stability. The classical Taylor experiment of flow between two rotating cylinders is analysed from the point of view of this criterion. These results are underlined by swirl tube experiments at the Institute of Aerospace Thermodynamics at Stuttgart University and the annular nozzle experiments performed in the Institute of Thermomechanics CAS in Prague. Both independent experiments confirm the transformation of the initial annular vortex into a stable potential-type vortex. The results of this theory can also be used to explain the exceptional stability of tropical cyclones.

Abstract Image

漩涡流稳定性:热力学分析和实验
本文对管内(涡流管)和自由环形漩涡流中的漩涡流稳定性进行了理论分析。起始概念是研究速度和温度波动的演变。非平衡热力学方法用于描述波动的大小及其特性。总焓的重要作用来自变异分析。此外,利用总焓制定了稳定的热力学准则,并与实验、数值结果和经典瑞利理论进行了比较,以支持其适用性。实验结果表明,固态体涡旋处于稳定边缘,这也是实验所观察到的。同样,根据热力学标准,势涡是稳定的;但根据瑞利标准,它处于稳定的起始阶段。从这一标准的角度分析了两个旋转圆柱体之间流动的经典泰勒实验。斯图加特大学航空热力学研究所的漩涡管实验和布拉格 CAS 热力学研究所的环形喷嘴实验都证实了这些结果。这两项独立实验都证实了初始环形漩涡向稳定的势型漩涡的转变。这一理论的结果也可用于解释热带气旋的特殊稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
15.40%
发文量
92
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena. Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信