{"title":"Solvent reorganization model takes the lead","authors":"Ahmad Elgazzar, Haotian Wang","doi":"10.1038/s44286-024-00065-x","DOIUrl":null,"url":null,"abstract":"Accurately modeling CO2 electroreduction is key to advancing the technology and understanding its productivity and CO2 utilization trends. Now, Marcus–Hush–Chidsey theory offers accurate predictions of experimental results, leading to further insights beyond reaction kinetics.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 5","pages":"334-335"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00065-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately modeling CO2 electroreduction is key to advancing the technology and understanding its productivity and CO2 utilization trends. Now, Marcus–Hush–Chidsey theory offers accurate predictions of experimental results, leading to further insights beyond reaction kinetics.