A Novel Three-Dimensional Direction-of-Arrival Estimation Approach Using a Deep Convolutional Neural Network

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Constantinos M. Mylonakis;Zaharias D. Zaharis
{"title":"A Novel Three-Dimensional Direction-of-Arrival Estimation Approach Using a Deep Convolutional Neural Network","authors":"Constantinos M. Mylonakis;Zaharias D. Zaharis","doi":"10.1109/OJVT.2024.3390833","DOIUrl":null,"url":null,"abstract":"This article aims to constitute a noteworthy contribution to the domain of direction-of-arrival (DoA) estimation through the application of deep learning algorithms. We approach the DoA estimation challenge as a binary classification task, employing a novel grid in the output layer and a deep convolutional neural network (DCNN) as the classifier. The input of the DCNN is the correlation matrix of signals received by a \n<inline-formula><tex-math>$4 \\times 4$</tex-math></inline-formula>\n uniformly spaced patch antenna array. The proposed model's performance is evaluated based on its capacity to predict angles of arrival from any direction in a three-dimensional space, encompassing azimuth angles within the interval \n<inline-formula><tex-math>$[0^\\circ, 360^\\circ)$</tex-math></inline-formula>\n and polar angles within \n<inline-formula><tex-math>$[0^\\circ, 60^\\circ ]$</tex-math></inline-formula>\n. We aim to optimize the utilization of spatial information and create a robust, precise, and efficient DoA estimator. To address this, we conduct comprehensive testing in diverse scenarios, encompassing the simultaneous reception of multiple signals across a wide range of signal-to-noise ratio values. Both mean absolute error and root mean squared error are calculated to assess the performance of the DCNN. Rigorous comparison with conventional and state-of-the-art endeavors emphasizes the proposed model's efficacy.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"5 ","pages":"643-657"},"PeriodicalIF":5.3000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10504989","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10504989/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article aims to constitute a noteworthy contribution to the domain of direction-of-arrival (DoA) estimation through the application of deep learning algorithms. We approach the DoA estimation challenge as a binary classification task, employing a novel grid in the output layer and a deep convolutional neural network (DCNN) as the classifier. The input of the DCNN is the correlation matrix of signals received by a $4 \times 4$ uniformly spaced patch antenna array. The proposed model's performance is evaluated based on its capacity to predict angles of arrival from any direction in a three-dimensional space, encompassing azimuth angles within the interval $[0^\circ, 360^\circ)$ and polar angles within $[0^\circ, 60^\circ ]$ . We aim to optimize the utilization of spatial information and create a robust, precise, and efficient DoA estimator. To address this, we conduct comprehensive testing in diverse scenarios, encompassing the simultaneous reception of multiple signals across a wide range of signal-to-noise ratio values. Both mean absolute error and root mean squared error are calculated to assess the performance of the DCNN. Rigorous comparison with conventional and state-of-the-art endeavors emphasizes the proposed model's efficacy.
使用深度卷积神经网络的新型三维到达方向估计方法
本文旨在通过应用深度学习算法,为到达方向(DoA)估计领域做出值得一提的贡献。我们将到达方向估计挑战作为一项二元分类任务来处理,在输出层中采用了一种新型网格,并将深度卷积神经网络(DCNN)作为分类器。DCNN 的输入是 4 美元乘以 4 美元的均匀间距贴片天线阵列接收到的信号的相关矩阵。所提模型的性能评估基于其预测来自三维空间任意方向的到达角的能力,包括区间 $[0^\circ, 360^\circ)$ 内的方位角和 $[0^\circ, 60^\circ ]$ 内的极角。我们的目标是优化空间信息的利用,创建一个稳健、精确、高效的 DoA 估算器。为此,我们在不同场景下进行了全面测试,包括在广泛的信噪比值范围内同时接收多个信号。我们计算了平均绝对误差和均方根误差,以评估 DCNN 的性能。与传统和最先进技术的严格比较强调了所提出模型的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信