Stella Self , Xingpei Zhao , Anja Zgodic , Anna Overby , David White , Alexander C. McLain , Caitlin Dyckman
{"title":"A hypothesis test for detecting spatial patterns in categorical areal data","authors":"Stella Self , Xingpei Zhao , Anja Zgodic , Anna Overby , David White , Alexander C. McLain , Caitlin Dyckman","doi":"10.1016/j.spasta.2024.100839","DOIUrl":null,"url":null,"abstract":"<div><p>The vast growth of spatial datasets in recent decades has fueled the development of many statistical methods for detecting spatial patterns. Two of the most commonly studied spatial patterns are clustering, loosely defined as datapoints with similar attributes existing close together, and dispersion, loosely defined as the semi-regular placement of datapoints with similar attributes. In this work, we develop a hypothesis test to detect spatial clustering or dispersion at specific distances in categorical areal data. Such data consists of a set of spatial regions whose boundaries are fixed and known (e.g., counties) associated with a categorical random variable (e.g. whether the county is rural, micropolitan, or metropolitan). We propose a method to extend the positive area proportion function (developed for detecting spatial clustering in binary areal data) to the categorical case. This proposal, referred to as the categorical positive areal proportion function test, can detect various spatial patterns, including homogeneous clusters, heterogeneous clusters, and dispersion. Our approach is the first method capable of distinguishing between different types of clustering in categorical areal data. After validating our method using an extensive simulation study, we use the categorical positive area proportion function test to detect spatial patterns in Boulder County, Colorado USA biological, agricultural, built and open conservation easements.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675324000307","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The vast growth of spatial datasets in recent decades has fueled the development of many statistical methods for detecting spatial patterns. Two of the most commonly studied spatial patterns are clustering, loosely defined as datapoints with similar attributes existing close together, and dispersion, loosely defined as the semi-regular placement of datapoints with similar attributes. In this work, we develop a hypothesis test to detect spatial clustering or dispersion at specific distances in categorical areal data. Such data consists of a set of spatial regions whose boundaries are fixed and known (e.g., counties) associated with a categorical random variable (e.g. whether the county is rural, micropolitan, or metropolitan). We propose a method to extend the positive area proportion function (developed for detecting spatial clustering in binary areal data) to the categorical case. This proposal, referred to as the categorical positive areal proportion function test, can detect various spatial patterns, including homogeneous clusters, heterogeneous clusters, and dispersion. Our approach is the first method capable of distinguishing between different types of clustering in categorical areal data. After validating our method using an extensive simulation study, we use the categorical positive area proportion function test to detect spatial patterns in Boulder County, Colorado USA biological, agricultural, built and open conservation easements.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.