In-line imaging and recognition of flip chip fabrication defects by real-time photoacoustic remote sensing system

IF 7.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Jijing Chen , Kaixuan Ding , Yihan Pi , Shoujun Zhang , Jiao Li , Zhen Tian
{"title":"In-line imaging and recognition of flip chip fabrication defects by real-time photoacoustic remote sensing system","authors":"Jijing Chen ,&nbsp;Kaixuan Ding ,&nbsp;Yihan Pi ,&nbsp;Shoujun Zhang ,&nbsp;Jiao Li ,&nbsp;Zhen Tian","doi":"10.1016/j.pacs.2024.100614","DOIUrl":null,"url":null,"abstract":"<div><p>Microscopic defects in flip chips, originating from manufacturing, significantly affect performance and longevity. Post-fabrication sampling methods ensure product functionality but lack in-line defect monitoring to enhance chip yield and lifespan in real-time. This study introduces a photoacoustic remote sensing (PARS) system for in-line imaging and defect recognition during flip-chip fabrication. We first propose a real-time PARS imaging method based on continuous acquisition combined with parallel processing image reconstruction to achieve real-time imaging during the scanning of flip-chip samples, reducing reconstruction time from an average of approximately 1134 ms to 38 ms. Subsequently, we propose improved YOLOv7 with space-to-depth block (IYOLOv7-SPD), an enhanced deep learning defect recognition method, for accurate in-line recognition and localization of microscopic defects during the PARS real-time imaging process. The experimental results validate the viability of the proposed system for enhancing the lifespan and yield of flip-chip products in chip manufacturing facilities.</p></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"38 ","pages":"Article 100614"},"PeriodicalIF":7.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213597924000314/pdfft?md5=8e20344c9f304221f2b1cd5fb3d28799&pid=1-s2.0-S2213597924000314-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597924000314","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microscopic defects in flip chips, originating from manufacturing, significantly affect performance and longevity. Post-fabrication sampling methods ensure product functionality but lack in-line defect monitoring to enhance chip yield and lifespan in real-time. This study introduces a photoacoustic remote sensing (PARS) system for in-line imaging and defect recognition during flip-chip fabrication. We first propose a real-time PARS imaging method based on continuous acquisition combined with parallel processing image reconstruction to achieve real-time imaging during the scanning of flip-chip samples, reducing reconstruction time from an average of approximately 1134 ms to 38 ms. Subsequently, we propose improved YOLOv7 with space-to-depth block (IYOLOv7-SPD), an enhanced deep learning defect recognition method, for accurate in-line recognition and localization of microscopic defects during the PARS real-time imaging process. The experimental results validate the viability of the proposed system for enhancing the lifespan and yield of flip-chip products in chip manufacturing facilities.

利用实时光声遥感系统对倒装芯片制造缺陷进行在线成像和识别
倒装芯片在制造过程中产生的微观缺陷会严重影响其性能和使用寿命。制造后取样方法可确保产品功能,但缺乏在线缺陷监测,无法实时提高芯片产量和寿命。本研究介绍了一种光声遥感(PARS)系统,用于倒装芯片制造过程中的在线成像和缺陷识别。我们首先提出了一种基于连续采集结合并行处理图像重建的实时 PARS 成像方法,以实现倒装芯片样品扫描过程中的实时成像,将重建时间从平均约 1134 毫秒缩短到 38 毫秒。随后,我们提出了增强型深度学习缺陷识别方法 YOLOv7 with space-to-depth block (IYOLOv7-SPD),用于在 PARS 实时成像过程中对微观缺陷进行精确的在线识别和定位。实验结果验证了所提系统在芯片制造设备中提高倒装芯片产品寿命和良率的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Photoacoustics
Photoacoustics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍: The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms. Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring. Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed. These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信