{"title":"Phenotypic plasticity drives seasonal thermal tolerance in a Baltic copepod","authors":"Alexandra Hahn, Reid S. Brennan","doi":"10.1016/j.jembe.2024.152014","DOIUrl":null,"url":null,"abstract":"<div><p>Seasonal changes in environmental conditions require substantial physiological responses for population persistence. Phenotypic plasticity is a common mechanism to tolerate these changes, but for organisms with short generation times rapid adaptation may also be a contributing factor. Here, we used a common garden design (11 °C and 18 °C) to disentangle the impacts of adaptation from phenotypic plasticity on thermal tolerance of the calanoid copepod <em>Acartia hudsonica</em> collected throughout spring and summer of a single year. <em>Acartia hudsonica</em> were collected from five time points across the season and thermal tolerance was determined using critical thermal maximum <span><math><mfenced><msub><mi>CT</mi><mi>max</mi></msub></mfenced></math></span> followed by additional measurements after one generation of common garden. As sea surface temperature increased through the season, field collected individuals showed corresponding increases in thermal tolerance but decreases in body size. Despite different thermal tolerances of wild collections, after one generation of common garden animals did not differ in <span><math><msub><mi>CT</mi><mi>max</mi></msub></math></span> within thermal treatments. Instead, there was evidence of phenotypic plasticity where higher temperatures were tolerated by the 18 °C versus the 11 °C treatment animals across all collections. Despite persisting differences between collections due to either adaptation or parental effects, acclimation also had significant effects on body size, with the warm treatment resulting in smaller individuals, consistent with the temperature size rule. Therefore, the differences in thermal tolerance and body size observed in field collected <em>A. hudsonica</em> were predominantly driven by plasticity rather than adaptation. However, the observed decrease in body size suggests that nutrient availability for higher trophic levels and ecosystem functioning could be impacted if temperatures consistently increase with no change in copepod abundance. This is the first record of <em>A. hudsonica</em> in the Baltic Sea known to the authors.</p></div>","PeriodicalId":50197,"journal":{"name":"Journal of Experimental Marine Biology and Ecology","volume":"576 ","pages":"Article 152014"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022098124000297/pdfft?md5=da962604f0055b7af04e7c054ac2764a&pid=1-s2.0-S0022098124000297-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Marine Biology and Ecology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022098124000297","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Seasonal changes in environmental conditions require substantial physiological responses for population persistence. Phenotypic plasticity is a common mechanism to tolerate these changes, but for organisms with short generation times rapid adaptation may also be a contributing factor. Here, we used a common garden design (11 °C and 18 °C) to disentangle the impacts of adaptation from phenotypic plasticity on thermal tolerance of the calanoid copepod Acartia hudsonica collected throughout spring and summer of a single year. Acartia hudsonica were collected from five time points across the season and thermal tolerance was determined using critical thermal maximum followed by additional measurements after one generation of common garden. As sea surface temperature increased through the season, field collected individuals showed corresponding increases in thermal tolerance but decreases in body size. Despite different thermal tolerances of wild collections, after one generation of common garden animals did not differ in within thermal treatments. Instead, there was evidence of phenotypic plasticity where higher temperatures were tolerated by the 18 °C versus the 11 °C treatment animals across all collections. Despite persisting differences between collections due to either adaptation or parental effects, acclimation also had significant effects on body size, with the warm treatment resulting in smaller individuals, consistent with the temperature size rule. Therefore, the differences in thermal tolerance and body size observed in field collected A. hudsonica were predominantly driven by plasticity rather than adaptation. However, the observed decrease in body size suggests that nutrient availability for higher trophic levels and ecosystem functioning could be impacted if temperatures consistently increase with no change in copepod abundance. This is the first record of A. hudsonica in the Baltic Sea known to the authors.
期刊介绍:
The Journal of Experimental Marine Biology and Ecology provides a forum for experimental ecological research on marine organisms in relation to their environment. Topic areas include studies that focus on biochemistry, physiology, behavior, genetics, and ecological theory. The main emphasis of the Journal lies in hypothesis driven experimental work, both from the laboratory and the field. Natural experiments or descriptive studies that elucidate fundamental ecological processes are welcome. Submissions should have a broad ecological framework beyond the specific study organism or geographic region.
Short communications that highlight emerging issues and exciting discoveries within five printed pages will receive a rapid turnaround. Papers describing important new analytical, computational, experimental and theoretical techniques and methods are encouraged and will be highlighted as Methodological Advances. We welcome proposals for Review Papers synthesizing a specific field within marine ecology. Finally, the journal aims to publish Special Issues at regular intervals synthesizing a particular field of marine science. All printed papers undergo a peer review process before being accepted and will receive a first decision within three months.