{"title":"A novel easy-to-desorb eluant contributes to address environmental contamination of African swine fever virus.","authors":"Li Zhang, Pengfei Zhao, Yingjun Xia, Yanli Hu, Chaofei Wang, Rui Fang, Junlong Zhao","doi":"10.1186/s13568-024-01697-1","DOIUrl":null,"url":null,"abstract":"<p><p>African swine fever virus (ASFV) is a highly pathogenic and rapidly disseminated virus with strong viability in the environment, suggesting the importance of environmental detection for prevention and control in all the pig industry. However, the detection results of environmental swabs cannot always reflect the accurate status of viral pollution, leading to persistent ASFV environmental contamination. In this study, we developed an ASFV eluant with higher environmental ASFV detection efficiency relative to 0.85% saline solution, which obtains the patent certificate issued by the China Intellectual Property Office (patent number:202010976050.9). qPCR analysis showed that in the environmental swab samples, the number of viral copies was 100 times higher for the ASFV eluant treatment than the traditional eluant treatment (0.85% saline solution). And besides, the high sensitivity of the ASFV eluant had be verified in a slaughterhouse environmental sampling detection. In soil samples, the ASFV eluent showed the same extraction effect as the TIANamp Soil DNA Kit, in contrast to no extraction effect for 0.85% saline solution. Simultaneously, this eluent could protect ASFV from degradation and allow the transportation of samples at ambient temperature without refrigeration. In clinical practice, we monitored the environmental contamination condition of the ASFV in a large-scale pig farm. The results shown that the ASFV load decreased after every disinfection in environment. This study provides an effective solution for surveilling the potential threat of ASFV in environment.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"55"},"PeriodicalIF":3.5000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087445/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-024-01697-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
African swine fever virus (ASFV) is a highly pathogenic and rapidly disseminated virus with strong viability in the environment, suggesting the importance of environmental detection for prevention and control in all the pig industry. However, the detection results of environmental swabs cannot always reflect the accurate status of viral pollution, leading to persistent ASFV environmental contamination. In this study, we developed an ASFV eluant with higher environmental ASFV detection efficiency relative to 0.85% saline solution, which obtains the patent certificate issued by the China Intellectual Property Office (patent number:202010976050.9). qPCR analysis showed that in the environmental swab samples, the number of viral copies was 100 times higher for the ASFV eluant treatment than the traditional eluant treatment (0.85% saline solution). And besides, the high sensitivity of the ASFV eluant had be verified in a slaughterhouse environmental sampling detection. In soil samples, the ASFV eluent showed the same extraction effect as the TIANamp Soil DNA Kit, in contrast to no extraction effect for 0.85% saline solution. Simultaneously, this eluent could protect ASFV from degradation and allow the transportation of samples at ambient temperature without refrigeration. In clinical practice, we monitored the environmental contamination condition of the ASFV in a large-scale pig farm. The results shown that the ASFV load decreased after every disinfection in environment. This study provides an effective solution for surveilling the potential threat of ASFV in environment.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.