Protein dynamics inform protein structure: An interdisciplinary investigation of protein crystallization propensity

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2024-09-04 DOI:10.1016/j.matt.2024.04.023
{"title":"Protein dynamics inform protein structure: An interdisciplinary investigation of protein crystallization propensity","authors":"","doi":"10.1016/j.matt.2024.04.023","DOIUrl":null,"url":null,"abstract":"<div><p>The classical central paradigm of structural biology links a protein’s sequence to its structure and function but overlooks conformational fluctuation that is integral to protein function. We propose a graph neural network model based on gated attention that explicitly incorporates protein dynamics via physics-based models to predict protein crystallization<span><span> propensity. We compare results to all-atom molecular dynamics simulations of flexible, disordered human tropoelastin and ordered, globular human lysyl oxidase-like protein. Our findings show that fluctuating residues correlate with locally maximal attention scores in the neural network. By methodically truncating the sequences, we establish correlations between dynamical and physicochemical molecular properties and protein crystallization propensity. Accounting for comprehensive biological mechanisms, our tool can facilitate the rational design of </span>protein sequences that lead to diffraction-quality crystals. Our study showcases the integration of physics-based and machine learning models for structure and property prediction, expanding the classical paradigm of structural biology.</span></p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524001966","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The classical central paradigm of structural biology links a protein’s sequence to its structure and function but overlooks conformational fluctuation that is integral to protein function. We propose a graph neural network model based on gated attention that explicitly incorporates protein dynamics via physics-based models to predict protein crystallization propensity. We compare results to all-atom molecular dynamics simulations of flexible, disordered human tropoelastin and ordered, globular human lysyl oxidase-like protein. Our findings show that fluctuating residues correlate with locally maximal attention scores in the neural network. By methodically truncating the sequences, we establish correlations between dynamical and physicochemical molecular properties and protein crystallization propensity. Accounting for comprehensive biological mechanisms, our tool can facilitate the rational design of protein sequences that lead to diffraction-quality crystals. Our study showcases the integration of physics-based and machine learning models for structure and property prediction, expanding the classical paradigm of structural biology.

Abstract Image

Abstract Image

蛋白质动力学为蛋白质结构提供信息:蛋白质结晶倾向的跨学科研究
结构生物学的经典核心范式将蛋白质序列与其结构和功能联系起来,但忽略了与蛋白质功能密不可分的构象波动。我们提出了一种基于门控注意力的图神经网络模型,该模型通过基于物理的模型明确地将蛋白质动力学纳入其中,从而预测蛋白质的结晶倾向。我们将结果与灵活、无序的人 tropoelastin 和有序、球状的人赖氨酸氧化酶样蛋白的全原子分子动力学模拟结果进行了比较。我们的研究结果表明,波动残基与神经网络中局部最大注意力得分相关。通过有条不紊地截断序列,我们建立了动态和物理化学分子特性与蛋白质结晶倾向之间的相关性。考虑到全面的生物机制,我们的工具有助于合理设计蛋白质序列,从而获得衍射质量的晶体。我们的研究展示了基于物理学和机器学习的结构与性质预测模型的整合,拓展了结构生物学的经典范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信