Continuous casting tundish quality study by mathematical & physical simulations, economics with plant result justifications

Soumitra Kumar Dinda
{"title":"Continuous casting tundish quality study by mathematical & physical simulations, economics with plant result justifications","authors":"Soumitra Kumar Dinda","doi":"10.1016/j.jalmes.2024.100079","DOIUrl":null,"url":null,"abstract":"<div><p>A combination of physical modeling, computational fluid dynamics modeling, and economics with plant trial studies was performed for quality improvement of Special Bar Quality (SBQ) and Oil Country Tubular Goods (OCTG) grade tundish steels. The present study consists of operating parameters like inert gas shrouding, non-isothermal conditions, and flow control devices (FCD) used on the billet product and slab quality. This work uses mathematical modeling using the fluid volume and discrete phase method (DPM) and the standard k-ε turbulence model validated with one-third scale physical water model experiments. A strong correlation between the physical model and computational simulation was found with rejection ratio and inclusion counts. Data about customer demands correlated with operating parameters for proper plant insights with an economic study to predict the cost-related issue. With the incorporation of FCD, the weight of the tundish skull was reduced by 6–10 M USD/year with a simulation studies expenditure of around 200 K. FCD also reduced the customer complaint index (CCI).</p></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"6 ","pages":"Article 100079"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949917824000269/pdfft?md5=684ce03dd9001c82ae01411045e9f003&pid=1-s2.0-S2949917824000269-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Metallurgical Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949917824000269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A combination of physical modeling, computational fluid dynamics modeling, and economics with plant trial studies was performed for quality improvement of Special Bar Quality (SBQ) and Oil Country Tubular Goods (OCTG) grade tundish steels. The present study consists of operating parameters like inert gas shrouding, non-isothermal conditions, and flow control devices (FCD) used on the billet product and slab quality. This work uses mathematical modeling using the fluid volume and discrete phase method (DPM) and the standard k-ε turbulence model validated with one-third scale physical water model experiments. A strong correlation between the physical model and computational simulation was found with rejection ratio and inclusion counts. Data about customer demands correlated with operating parameters for proper plant insights with an economic study to predict the cost-related issue. With the incorporation of FCD, the weight of the tundish skull was reduced by 6–10 M USD/year with a simulation studies expenditure of around 200 K. FCD also reduced the customer complaint index (CCI).

通过数学和物理模拟对连铸中间包质量进行研究,并对工厂结果进行经济性论证
为提高特殊棒材(SBQ)和油田管材(OCTG)级外包钢的质量,结合物理建模、计算流体动力学建模和工厂试验研究进行了经济学研究。本研究包括惰性气体罩、非等温条件和流量控制装置 (FCD) 等操作参数对钢坯和板坯质量的影响。这项工作使用流体体积和离散相法 (DPM) 进行数学建模,并使用标准 k-ε 湍流模型与三分之一比例的物理水模型试验进行验证。发现物理模型与计算模拟之间在排斥率和夹杂物计数方面存在很强的相关性。客户需求数据与运行参数相关联,可通过经济研究预测与成本相关的问题,从而对工厂有正确的认识。采用 FCD 后,外滩头骨的重量减少了 600 万至 1000 万美元/年,模拟研究支出约为 200 K 美元。FCD 还降低了客户投诉指数 (CCI)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信