Two Ramsey problems in blowups of graphs

IF 1 3区 数学 Q1 MATHEMATICS
António Girão , Robert Hancock
{"title":"Two Ramsey problems in blowups of graphs","authors":"António Girão ,&nbsp;Robert Hancock","doi":"10.1016/j.ejc.2024.103984","DOIUrl":null,"url":null,"abstract":"<div><p>Given graphs <span><math><mi>G</mi></math></span> and <span><math><mi>H</mi></math></span>, we say <span><math><mrow><mi>G</mi><mover><mrow><mo>→</mo></mrow><mrow><mrow><mi>r</mi></mrow></mrow></mover><mi>H</mi></mrow></math></span> if every <span><math><mi>r</mi></math></span>-colouring of the edges of <span><math><mi>G</mi></math></span> contains a monochromatic copy of <span><math><mi>H</mi></math></span>. Let <span><math><mrow><mi>H</mi><mrow><mo>[</mo><mi>t</mi><mo>]</mo></mrow></mrow></math></span> denote the <span><math><mi>t</mi></math></span>-blowup of <span><math><mi>H</mi></math></span>. The blowup Ramsey number <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>G</mi><mover><mrow><mo>→</mo></mrow><mrow><mrow><mi>r</mi></mrow></mrow></mover><mi>H</mi><mo>;</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> is the minimum <span><math><mi>n</mi></math></span> such that <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow><mover><mrow><mo>→</mo></mrow><mrow><mrow><mi>r</mi></mrow></mrow></mover><mi>H</mi><mrow><mo>[</mo><mi>t</mi><mo>]</mo></mrow></mrow></math></span>. Fox, Luo and Wigderson refined an upper bound of Souza, showing that, given <span><math><mi>G</mi></math></span>, <span><math><mi>H</mi></math></span> and <span><math><mi>r</mi></math></span> such that <span><math><mrow><mi>G</mi><mover><mrow><mo>→</mo></mrow><mrow><mrow><mi>r</mi></mrow></mrow></mover><mi>H</mi></mrow></math></span>, there exist constants <span><math><mrow><mi>a</mi><mo>=</mo><mi>a</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>b</mi><mo>=</mo><mi>b</mi><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> such that for all <span><math><mrow><mi>t</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>G</mi><mover><mrow><mo>→</mo></mrow><mrow><mrow><mi>r</mi></mrow></mrow></mover><mi>H</mi><mo>;</mo><mi>t</mi><mo>)</mo></mrow><mo>≤</mo><mi>a</mi><msup><mrow><mi>b</mi></mrow><mrow><mi>t</mi></mrow></msup></mrow></math></span>. They conjectured that there exist some graphs <span><math><mi>H</mi></math></span> for which the constant <span><math><mi>a</mi></math></span> depending on <span><math><mi>G</mi></math></span> is necessary. We prove this conjecture by showing that the statement is true in the case of <span><math><mi>H</mi></math></span> being 3-chromatically connected, which in particular includes triangles. On the other hand, perhaps surprisingly, we show that for forests <span><math><mi>F</mi></math></span>, there exists an upper bound for <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>G</mi><mover><mrow><mo>→</mo></mrow><mrow><mrow><mi>r</mi></mrow></mrow></mover><mi>F</mi><mo>;</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> which is independent of <span><math><mi>G</mi></math></span>.</p><p>Second, we show that for any <span><math><mrow><mi>r</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, any sufficiently large <span><math><mi>r</mi></math></span>-edge coloured complete graph on <span><math><mi>n</mi></math></span> vertices with <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>t</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> edges in each colour contains a member from a certain finite family <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> of <span><math><mi>r</mi></math></span>-edge coloured complete graphs. This answers a conjecture of Bowen, Hansberg, Montejano and Müyesser.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000696/pdfft?md5=90c712e911fae05fd1803c79c5bbceb8&pid=1-s2.0-S0195669824000696-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000696","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given graphs G and H, we say GrH if every r-colouring of the edges of G contains a monochromatic copy of H. Let H[t] denote the t-blowup of H. The blowup Ramsey number B(GrH;t) is the minimum n such that G[n]rH[t]. Fox, Luo and Wigderson refined an upper bound of Souza, showing that, given G, H and r such that GrH, there exist constants a=a(G,H,r) and b=b(H,r) such that for all tN, B(GrH;t)abt. They conjectured that there exist some graphs H for which the constant a depending on G is necessary. We prove this conjecture by showing that the statement is true in the case of H being 3-chromatically connected, which in particular includes triangles. On the other hand, perhaps surprisingly, we show that for forests F, there exists an upper bound for B(GrF;t) which is independent of G.

Second, we show that for any r,tN, any sufficiently large r-edge coloured complete graph on n vertices with Ω(n21/t) edges in each colour contains a member from a certain finite family Ftr of r-edge coloured complete graphs. This answers a conjecture of Bowen, Hansberg, Montejano and Müyesser.

图爆炸中的两个拉姆齐问题
给定图 G 和 H,如果 G 的每一个 r 色边都包含 H 的一个单色副本,我们就说 G→rH。让 H[t] 表示 H 的 t 放大。福克斯、罗和维格德森完善了苏扎的一个上界,证明给定 G、H 和 r,使得 G→rH 时,存在常数 a=a(G,H,r)和 b=b(H,r),使得对于所有 t∈N,B(G→rH;t)≤abt。他们猜想存在一些图 H,对于这些图 H,取决于 G 的常数 a 是必要的。我们证明了这一猜想,表明在 H 是 3 色连接的情况下,尤其是包括三角形在内的情况下,该声明是正确的。另一方面,也许令人吃惊的是,我们证明了对于森林 F,存在一个与 G 无关的 B(G→rF;t)上界。其次,我们证明了对于任意 r,t∈N,n 个顶点上任意足够大的 r 边着色完整图,且每种颜色都有Ω(n2-1/t) 条边,都包含某个 r 边着色完整图有限族 Ftr 中的一个成员。这回答了鲍恩、汉斯伯格、蒙特亚诺和米耶塞尔的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信