{"title":"Two Ramsey problems in blowups of graphs","authors":"António Girão , Robert Hancock","doi":"10.1016/j.ejc.2024.103984","DOIUrl":null,"url":null,"abstract":"<div><p>Given graphs <span><math><mi>G</mi></math></span> and <span><math><mi>H</mi></math></span>, we say <span><math><mrow><mi>G</mi><mover><mrow><mo>→</mo></mrow><mrow><mrow><mi>r</mi></mrow></mrow></mover><mi>H</mi></mrow></math></span> if every <span><math><mi>r</mi></math></span>-colouring of the edges of <span><math><mi>G</mi></math></span> contains a monochromatic copy of <span><math><mi>H</mi></math></span>. Let <span><math><mrow><mi>H</mi><mrow><mo>[</mo><mi>t</mi><mo>]</mo></mrow></mrow></math></span> denote the <span><math><mi>t</mi></math></span>-blowup of <span><math><mi>H</mi></math></span>. The blowup Ramsey number <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>G</mi><mover><mrow><mo>→</mo></mrow><mrow><mrow><mi>r</mi></mrow></mrow></mover><mi>H</mi><mo>;</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> is the minimum <span><math><mi>n</mi></math></span> such that <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow><mover><mrow><mo>→</mo></mrow><mrow><mrow><mi>r</mi></mrow></mrow></mover><mi>H</mi><mrow><mo>[</mo><mi>t</mi><mo>]</mo></mrow></mrow></math></span>. Fox, Luo and Wigderson refined an upper bound of Souza, showing that, given <span><math><mi>G</mi></math></span>, <span><math><mi>H</mi></math></span> and <span><math><mi>r</mi></math></span> such that <span><math><mrow><mi>G</mi><mover><mrow><mo>→</mo></mrow><mrow><mrow><mi>r</mi></mrow></mrow></mover><mi>H</mi></mrow></math></span>, there exist constants <span><math><mrow><mi>a</mi><mo>=</mo><mi>a</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>b</mi><mo>=</mo><mi>b</mi><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> such that for all <span><math><mrow><mi>t</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>G</mi><mover><mrow><mo>→</mo></mrow><mrow><mrow><mi>r</mi></mrow></mrow></mover><mi>H</mi><mo>;</mo><mi>t</mi><mo>)</mo></mrow><mo>≤</mo><mi>a</mi><msup><mrow><mi>b</mi></mrow><mrow><mi>t</mi></mrow></msup></mrow></math></span>. They conjectured that there exist some graphs <span><math><mi>H</mi></math></span> for which the constant <span><math><mi>a</mi></math></span> depending on <span><math><mi>G</mi></math></span> is necessary. We prove this conjecture by showing that the statement is true in the case of <span><math><mi>H</mi></math></span> being 3-chromatically connected, which in particular includes triangles. On the other hand, perhaps surprisingly, we show that for forests <span><math><mi>F</mi></math></span>, there exists an upper bound for <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>G</mi><mover><mrow><mo>→</mo></mrow><mrow><mrow><mi>r</mi></mrow></mrow></mover><mi>F</mi><mo>;</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> which is independent of <span><math><mi>G</mi></math></span>.</p><p>Second, we show that for any <span><math><mrow><mi>r</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, any sufficiently large <span><math><mi>r</mi></math></span>-edge coloured complete graph on <span><math><mi>n</mi></math></span> vertices with <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>t</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> edges in each colour contains a member from a certain finite family <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> of <span><math><mi>r</mi></math></span>-edge coloured complete graphs. This answers a conjecture of Bowen, Hansberg, Montejano and Müyesser.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000696/pdfft?md5=90c712e911fae05fd1803c79c5bbceb8&pid=1-s2.0-S0195669824000696-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000696","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given graphs and , we say if every -colouring of the edges of contains a monochromatic copy of . Let denote the -blowup of . The blowup Ramsey number is the minimum such that . Fox, Luo and Wigderson refined an upper bound of Souza, showing that, given , and such that , there exist constants and such that for all , . They conjectured that there exist some graphs for which the constant depending on is necessary. We prove this conjecture by showing that the statement is true in the case of being 3-chromatically connected, which in particular includes triangles. On the other hand, perhaps surprisingly, we show that for forests , there exists an upper bound for which is independent of .
Second, we show that for any , any sufficiently large -edge coloured complete graph on vertices with edges in each colour contains a member from a certain finite family of -edge coloured complete graphs. This answers a conjecture of Bowen, Hansberg, Montejano and Müyesser.
给定图 G 和 H,如果 G 的每一个 r 色边都包含 H 的一个单色副本,我们就说 G→rH。让 H[t] 表示 H 的 t 放大。福克斯、罗和维格德森完善了苏扎的一个上界,证明给定 G、H 和 r,使得 G→rH 时,存在常数 a=a(G,H,r)和 b=b(H,r),使得对于所有 t∈N,B(G→rH;t)≤abt。他们猜想存在一些图 H,对于这些图 H,取决于 G 的常数 a 是必要的。我们证明了这一猜想,表明在 H 是 3 色连接的情况下,尤其是包括三角形在内的情况下,该声明是正确的。另一方面,也许令人吃惊的是,我们证明了对于森林 F,存在一个与 G 无关的 B(G→rF;t)上界。其次,我们证明了对于任意 r,t∈N,n 个顶点上任意足够大的 r 边着色完整图,且每种颜色都有Ω(n2-1/t) 条边,都包含某个 r 边着色完整图有限族 Ftr 中的一个成员。这回答了鲍恩、汉斯伯格、蒙特亚诺和米耶塞尔的一个猜想。
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.