Bounds for the number of multidimensional partitions

IF 1 3区 数学 Q1 MATHEMATICS
Kristina Oganesyan
{"title":"Bounds for the number of multidimensional partitions","authors":"Kristina Oganesyan","doi":"10.1016/j.ejc.2024.103982","DOIUrl":null,"url":null,"abstract":"<div><p>We obtain estimates for the number <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional integer partitions of a number <span><math><mi>n</mi></math></span>. It is known that the two-sided inequality <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup><mo>&lt;</mo><mo>log</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>&lt;</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup></mrow></math></span> is always true and that <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>1</mn></mrow></math></span> whenever <span><math><mrow><mo>log</mo><mi>n</mi><mo>&gt;</mo><mn>3</mn><mi>d</mi></mrow></math></span>. However, establishing the <span><math><mi>“</mi></math></span>right<span><math><mi>”</mi></math></span> dependence of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> on <span><math><mi>d</mi></math></span> remained an open problem. We show that if <span><math><mi>d</mi></math></span> is sufficiently small with respect to <span><math><mi>n</mi></math></span>, then <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> does not depend on <span><math><mi>d</mi></math></span>, which means that <span><math><mrow><mo>log</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> is up to an absolute constant equal to <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup></math></span>. Besides, we provide estimates of <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> for different ranges of <span><math><mi>d</mi></math></span> in terms of <span><math><mi>n</mi></math></span>, which give the asymptotics of <span><math><mrow><mo>log</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> in each case.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000672","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We obtain estimates for the number pd(n) of (d1)-dimensional integer partitions of a number n. It is known that the two-sided inequality C1(d)n11/d<logpd(n)<C2(d)n11/d is always true and that C1(d)>1 whenever logn>3d. However, establishing the right dependence of C2 on d remained an open problem. We show that if d is sufficiently small with respect to n, then C2 does not depend on d, which means that logpd(n) is up to an absolute constant equal to n11/d. Besides, we provide estimates of pd(n) for different ranges of d in terms of n, which give the asymptotics of logpd(n) in each case.

多维分区数的界限
众所周知,双面不等式 C1(d)n1-1/d<logpd(n)<C2(d)n1-1/d 始终为真,并且只要 logn>3d 时,C1(d)>1。然而,建立 C2 对 d 的 "正确 "依赖关系仍然是一个未决问题。我们的研究表明,如果 d 相对于 n 足够小,那么 C2 就不依赖于 d,这意味着 logpd(n) 的绝对常数等于 n1-1/d。此外,我们还给出了不同 d 范围内 pd(n) 对 n 的估计值,并给出了每种情况下 logpd(n) 的渐近线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信