Construction of MOF-derived hollow sugar gourd-like Ni-Co-S@NiMoO4•xH2O nanocage arrays for efficient solar-powered overall water splitting

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Zizhou Gao , Tengfei Zhang , Dan Xu, Ping Liu, Huan Liu, Huanhuan Li, Yanyan Liu, Feng Yu, Gang Wang
{"title":"Construction of MOF-derived hollow sugar gourd-like Ni-Co-S@NiMoO4•xH2O nanocage arrays for efficient solar-powered overall water splitting","authors":"Zizhou Gao ,&nbsp;Tengfei Zhang ,&nbsp;Dan Xu,&nbsp;Ping Liu,&nbsp;Huan Liu,&nbsp;Huanhuan Li,&nbsp;Yanyan Liu,&nbsp;Feng Yu,&nbsp;Gang Wang","doi":"10.1016/j.jcat.2024.115540","DOIUrl":null,"url":null,"abstract":"<div><p>In situ growth of nanoarrays on conductive substrates is an efficient strategy for designing electrocatalysts. However, preparing array with excellent catalytic activities for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) remains a challenge. Here, we construct a novel hollow sugar gourd-like Ni-Co-S@NiMoO<sub>4</sub>·<em>x</em>H<sub>2</sub>O/NF nanocage array through MOF derivation strategy for stable solar-driven overall water splitting. Due to the hollow core–shell structure and multi-component advantages, the Ni-Co-S@NiMoO<sub>4</sub>·<em>x</em>H<sub>2</sub>O/NF presents high density of active sites and fast charge transfer rate. Therefore, Ni-Co-S@NiMoO<sub>4</sub>·<em>x</em>H<sub>2</sub>O/NF exhibits attractive electrocatalytic activity in alkaline electrolytes for HER (90 mV@10 mA cm<sup>−2</sup>) and OER (208 mV@10 mA cm<sup>−2</sup>, 245 mV@100 mA cm<sup>−2</sup>). The corresponding two-electrode electrolytic cell demonstrates small cell voltage (1.515 V @ 10 mA cm<sup>−2</sup>) and shows durability over 50 h at 10 mA cm<sup>−2</sup>, exhibiting excellent overall water splitting performance. It is worth noting that the solar-assisted electrolysis cell reaches a high solar-to-hydrogen (STH) conversion rate of 19.4 %. The construction of this unique hollow structure gives a fascinating method for improving the HER and OER performance of transition metal sulfide electrocatalysts.</p></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951724002537","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In situ growth of nanoarrays on conductive substrates is an efficient strategy for designing electrocatalysts. However, preparing array with excellent catalytic activities for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) remains a challenge. Here, we construct a novel hollow sugar gourd-like Ni-Co-S@NiMoO4·xH2O/NF nanocage array through MOF derivation strategy for stable solar-driven overall water splitting. Due to the hollow core–shell structure and multi-component advantages, the Ni-Co-S@NiMoO4·xH2O/NF presents high density of active sites and fast charge transfer rate. Therefore, Ni-Co-S@NiMoO4·xH2O/NF exhibits attractive electrocatalytic activity in alkaline electrolytes for HER (90 mV@10 mA cm−2) and OER (208 mV@10 mA cm−2, 245 mV@100 mA cm−2). The corresponding two-electrode electrolytic cell demonstrates small cell voltage (1.515 V @ 10 mA cm−2) and shows durability over 50 h at 10 mA cm−2, exhibiting excellent overall water splitting performance. It is worth noting that the solar-assisted electrolysis cell reaches a high solar-to-hydrogen (STH) conversion rate of 19.4 %. The construction of this unique hollow structure gives a fascinating method for improving the HER and OER performance of transition metal sulfide electrocatalysts.

Abstract Image

构建源自 MOF 的空心糖葫芦状 Ni-Co-S@NiMoO4-xH2O 纳米笼阵列,用于高效太阳能整体水分离
在导电基底上原位生长纳米阵列是设计电催化剂的一种有效策略。然而,制备对氢进化反应(HER)和氧进化反应(OER)具有优异催化活性的阵列仍是一项挑战。在此,我们通过 MOF 衍生策略构建了一种新型空心糖葫芦状 Ni-Co-S@NiMoO4-xH2O/NF 纳米笼阵列,用于稳定的太阳能驱动整体水分离。由于 Ni-Co-S@NiMoO4-xH2O/NF 具有空心核壳结构和多组分的优势,因此活性位点密度高,电荷转移速率快。因此,Ni-Co-S@NiMoO4-xH2O/NF 在碱性电解质中对 HER(90 mV@10 mA cm-2)和 OER(208 mV@10 mA cm-2,245 mV@100 mA cm-2)表现出极具吸引力的电催化活性。相应的双电极电解池显示出较小的电池电压(1.515 V@10 mA cm-2),并在 10 mA cm-2 下显示出 50 小时以上的耐久性,表现出卓越的整体水分离性能。值得一提的是,太阳能辅助电解槽的太阳能-氢气(STH)转换率高达 19.4%。这种独特中空结构的构建为提高过渡金属硫化物电催化剂的 HER 和 OER 性能提供了一种令人着迷的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信