Energy optimization of a non-aqueous solvent CO2 absorption system with pressure swing regeneration

IF 4.6 3区 工程技术 Q2 ENERGY & FUELS
Chairunnisa , Yingxin Zhou , Yitong Wu , Cheng You , Kyaw Thu , Takahiko Miyazaki , Yusuke Uehara , Hiroshi Machida , Koyo Norinaga
{"title":"Energy optimization of a non-aqueous solvent CO2 absorption system with pressure swing regeneration","authors":"Chairunnisa ,&nbsp;Yingxin Zhou ,&nbsp;Yitong Wu ,&nbsp;Cheng You ,&nbsp;Kyaw Thu ,&nbsp;Takahiko Miyazaki ,&nbsp;Yusuke Uehara ,&nbsp;Hiroshi Machida ,&nbsp;Koyo Norinaga","doi":"10.1016/j.ijggc.2024.104154","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on optimizing the energy requirement in the post-combustion CO<sub>2</sub> capture system using pressure swing regeneration through a model-based design (MBD). The simulation results highlight the significant impact of CO<sub>2</sub> recovery, inlet gas and liquid flow rate, and CO<sub>2</sub> concentration in the flue gas on the overall energy demand of the system. Moreover, an investigation into the de-sublimation chamber was undertaken, revealing a relationship between dry ice formation and the heat transfer between the LNG stream and CO<sub>2</sub> in the heat exchanger. The parametric analysis study reveals that the sensible heat of the lean solvent is significantly influenced by the CO<sub>2</sub> concentration in the liquid, consequently affecting the overall system energy. According to the results, the utilization of cold energy from LNG could save 80 % of the total energy requirement. The optimization results found the best working condition, which consumes energy of 0.190 GJ/ton CO<sub>2</sub>, 31 % lower than the basic scenario.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"135 ","pages":"Article 104154"},"PeriodicalIF":4.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583624000975","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on optimizing the energy requirement in the post-combustion CO2 capture system using pressure swing regeneration through a model-based design (MBD). The simulation results highlight the significant impact of CO2 recovery, inlet gas and liquid flow rate, and CO2 concentration in the flue gas on the overall energy demand of the system. Moreover, an investigation into the de-sublimation chamber was undertaken, revealing a relationship between dry ice formation and the heat transfer between the LNG stream and CO2 in the heat exchanger. The parametric analysis study reveals that the sensible heat of the lean solvent is significantly influenced by the CO2 concentration in the liquid, consequently affecting the overall system energy. According to the results, the utilization of cold energy from LNG could save 80 % of the total energy requirement. The optimization results found the best working condition, which consumes energy of 0.190 GJ/ton CO2, 31 % lower than the basic scenario.

具有变压再生功能的非水溶剂二氧化碳吸收系统的能量优化
本研究的重点是通过基于模型的设计(MBD),优化使用变压再生技术的燃烧后二氧化碳捕集系统的能源需求。模拟结果表明,二氧化碳回收率、入口气体和液体流速以及烟气中的二氧化碳浓度对系统的总体能源需求有重大影响。此外,还对脱升华室进行了调查,发现干冰的形成与热交换器中液化天然气流和二氧化碳之间的热传递之间存在关系。参数分析研究表明,贫溶剂的显热受液体中二氧化碳浓度的显著影响,从而影响整个系统的能量。结果表明,利用液化天然气的冷能可节省 80% 的总能源需求。优化结果发现了最佳工作条件,其能耗为 0.190 GJ/吨二氧化碳,比基本方案低 31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
10.30%
发文量
199
审稿时长
4.8 months
期刊介绍: The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信