António Girão , Kevin Hendrey , Freddie Illingworth , Florian Lehner , Lukas Michel , Michael Savery , Raphael Steiner
{"title":"Chromatic number is not tournament-local","authors":"António Girão , Kevin Hendrey , Freddie Illingworth , Florian Lehner , Lukas Michel , Michael Savery , Raphael Steiner","doi":"10.1016/j.jctb.2024.04.005","DOIUrl":null,"url":null,"abstract":"<div><p>Scott and Seymour conjectured the existence of a function <span><math><mi>f</mi><mo>:</mo><mi>N</mi><mo>→</mo><mi>N</mi></math></span> such that, for every graph <em>G</em> and tournament <em>T</em> on the same vertex set, <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>⩾</mo><mi>f</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> implies that <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>[</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mi>T</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>(</mo><mi>v</mi><mo>)</mo><mo>]</mo><mo>)</mo><mo>⩾</mo><mi>k</mi></math></span> for some vertex <em>v</em>. In this note we disprove this conjecture even if <em>v</em> is replaced by a vertex set of size <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>)</mo></math></span>. As a consequence, we answer in the negative a question of Harutyunyan, Le, Thomassé, and Wu concerning the corresponding statement where the graph <em>G</em> is replaced by another tournament, and disprove a related conjecture of Nguyen, Scott, and Seymour. We also show that the setting where chromatic number is replaced by degeneracy exhibits a quite different behaviour.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"168 ","pages":"Pages 86-95"},"PeriodicalIF":1.2000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000315/pdfft?md5=96fc5d216231691bd8b06b1f5ac0f4bd&pid=1-s2.0-S0095895624000315-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000315","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Scott and Seymour conjectured the existence of a function such that, for every graph G and tournament T on the same vertex set, implies that for some vertex v. In this note we disprove this conjecture even if v is replaced by a vertex set of size . As a consequence, we answer in the negative a question of Harutyunyan, Le, Thomassé, and Wu concerning the corresponding statement where the graph G is replaced by another tournament, and disprove a related conjecture of Nguyen, Scott, and Seymour. We also show that the setting where chromatic number is replaced by degeneracy exhibits a quite different behaviour.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.