{"title":"Revisiting the Deviation Effects of Irrelevant Sound on Serial and Nonserial Tasks.","authors":"Yu Nakajima, Hiroshi Ashida","doi":"10.1163/22134808-bja10123","DOIUrl":null,"url":null,"abstract":"<p><p>Two types of disruptive effects of irrelevant sound on visual tasks have been reported: the changing-state effect and the deviation effect. The idea that the deviation effect, which arises from attentional capture, is independent of task requirements, whereas the changing-state effect is specific to tasks that require serial processing, has been examined by comparing tasks that do or do not require serial-order processing. While many previous studies used the missing-item task as the nonserial task, it is unclear whether other cognitive tasks lead to similar results regarding the different task specificity of both effects. Kattner et al. (Memory and Cognition, 2023) used the mental-arithmetic task as the nonserial task, and failed to demonstrate the deviation effect. However, there were several procedural factors that could account for the lack of deviation effect, such as differences in design and procedures (e.g., conducted online, intermixed conditions). In the present study, we aimed to investigate whether the deviation effect could be observed in both the serial-recall and mental-arithmetic tasks when these procedural factors were modified. We found strong evidence of the deviation effect in both the serial-recall and the mental-arithmetic tasks when stimulus presentation and experimental design were aligned with previous studies that demonstrated the deviation effect (e.g., conducted in-person, blockwise presentation of sound, etc.). The results support the idea that the deviation effect is not task-specific.</p>","PeriodicalId":51298,"journal":{"name":"Multisensory Research","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multisensory Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1163/22134808-bja10123","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Two types of disruptive effects of irrelevant sound on visual tasks have been reported: the changing-state effect and the deviation effect. The idea that the deviation effect, which arises from attentional capture, is independent of task requirements, whereas the changing-state effect is specific to tasks that require serial processing, has been examined by comparing tasks that do or do not require serial-order processing. While many previous studies used the missing-item task as the nonserial task, it is unclear whether other cognitive tasks lead to similar results regarding the different task specificity of both effects. Kattner et al. (Memory and Cognition, 2023) used the mental-arithmetic task as the nonserial task, and failed to demonstrate the deviation effect. However, there were several procedural factors that could account for the lack of deviation effect, such as differences in design and procedures (e.g., conducted online, intermixed conditions). In the present study, we aimed to investigate whether the deviation effect could be observed in both the serial-recall and mental-arithmetic tasks when these procedural factors were modified. We found strong evidence of the deviation effect in both the serial-recall and the mental-arithmetic tasks when stimulus presentation and experimental design were aligned with previous studies that demonstrated the deviation effect (e.g., conducted in-person, blockwise presentation of sound, etc.). The results support the idea that the deviation effect is not task-specific.
期刊介绍:
Multisensory Research is an interdisciplinary archival journal covering all aspects of multisensory processing including the control of action, cognition and attention. Research using any approach to increase our understanding of multisensory perceptual, behavioural, neural and computational mechanisms is encouraged. Empirical, neurophysiological, psychophysical, brain imaging, clinical, developmental, mathematical and computational analyses are welcome. Research will also be considered covering multisensory applications such as sensory substitution, crossmodal methods for delivering sensory information or multisensory approaches to robotics and engineering. Short communications and technical notes that draw attention to new developments will be included, as will reviews and commentaries on current issues. Special issues dealing with specific topics will be announced from time to time. Multisensory Research is a continuation of Seeing and Perceiving, and of Spatial Vision.