{"title":"Effects of noise exposure on stress hormone changes during task performance in young Korean men: quasi-experimental study.","authors":"Sung-Hee Lee, A-Ram Kim, Jiho Lee","doi":"10.1080/15287394.2024.2352122","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous studies have suggested that noise exposure might be associated with changes in stress hormone levels. However, quantitative evidence for these effects in humans is rare and remains controversial. This study aimed to investigate the acute effects of exposure to noise and its different levels on stress hormone changes in task performance. Quasi-experimental noise exposure environment was established for 90 male university student volunteers in their twenties, and each was exposed to different noise levels during task performance. The stress hormones tested included cortisol, adrenocorticotropic hormone (ACTH), adrenaline, and noradrenaline. A one-way ANOVA was performed to investigate differences in hormone levels measured in the three groups according to the noise exposure levels (35, 45, or 75 dB). Analysis of covariance (ANCOVA) was used to adjust for confounding factors that might affect hormone levels. After adjusting for confounders, significant exposure-dependent differences were found in hormone levels in salivary cortisol, serum cortisol, serum ACTH, and serum adrenaline. The amount of hormonal increase in 75 dB exposure group compared to 35 or 45 dB groups was detected. Similar results were also seen in the rate of change analysis. Our findings indicate that short-term noise exposure during task performance elevates stress hormone levels. Further, the extent of stress hormone alterations varies with noise exposure levels. Changes in hormone levels are an objective measure that may be used to identify health effects and stress responses in various noise environments.</p>","PeriodicalId":54758,"journal":{"name":"Journal of Toxicology and Environmental Health-Part A-Current Issues","volume":" ","pages":"605-615"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health-Part A-Current Issues","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15287394.2024.2352122","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous studies have suggested that noise exposure might be associated with changes in stress hormone levels. However, quantitative evidence for these effects in humans is rare and remains controversial. This study aimed to investigate the acute effects of exposure to noise and its different levels on stress hormone changes in task performance. Quasi-experimental noise exposure environment was established for 90 male university student volunteers in their twenties, and each was exposed to different noise levels during task performance. The stress hormones tested included cortisol, adrenocorticotropic hormone (ACTH), adrenaline, and noradrenaline. A one-way ANOVA was performed to investigate differences in hormone levels measured in the three groups according to the noise exposure levels (35, 45, or 75 dB). Analysis of covariance (ANCOVA) was used to adjust for confounding factors that might affect hormone levels. After adjusting for confounders, significant exposure-dependent differences were found in hormone levels in salivary cortisol, serum cortisol, serum ACTH, and serum adrenaline. The amount of hormonal increase in 75 dB exposure group compared to 35 or 45 dB groups was detected. Similar results were also seen in the rate of change analysis. Our findings indicate that short-term noise exposure during task performance elevates stress hormone levels. Further, the extent of stress hormone alterations varies with noise exposure levels. Changes in hormone levels are an objective measure that may be used to identify health effects and stress responses in various noise environments.
期刊介绍:
The Journal of Toxicology and Environmental Health, Part A , Current Issues is an authoritative journal that features strictly refereed original research in the field of environmental sciences, public and occupational health, and toxicology.