Ushasi Das, Devesh U Kapoor, Sudarshan Singh, Bhupendra G Prajapati
{"title":"Unveiling the potential of chitosan-coated lipid nanoparticles in drug delivery for management of critical illness: a review.","authors":"Ushasi Das, Devesh U Kapoor, Sudarshan Singh, Bhupendra G Prajapati","doi":"10.1515/znc-2023-0181","DOIUrl":null,"url":null,"abstract":"<p><p>Chitosan (CT), a natural, cationic, chemically stable molecule, biocompatible, biodegradable, nontoxic, polysaccharide derived from the deacetylation of chitin, has very uniquely surfaced as a material of promise for drug delivery and biomedical applications. For the oral, ocular, cutaneous, pulmonary, and nose-to-brain routes, CT-coated nanoparticles (CTCNPs) have numerous advantages, consisting of improved controlled drug release, physicochemical stability, improved cell and tissue interactions, and increased bioavailability and efficacy of the active ingredient. CTCNPs have a broad range of therapeutic properties including anticancer, antiviral, antifungal, anti-inflammatory, antibacterial properties, treating neurological disorders, and other diseases. This has led to substantial research into the many potential uses of CT as a drug delivery vehicle. CT has also been employed in a wide range of biomedical processes, including bone and cartilage tissue regeneration, ocular tissue regeneration, periodontal tissue regeneration, heart tissue regeneration, and wound healing. Additionally, CT has been used in cosmeceutical, bioimaging, immunization, and gene transfer applications. CT exhibits a number of biological activities, which are the basis for its remarkable potential for use as a drug delivery vehicle, and these activities are covered in detail in this article. The alterations applied to CT to obtain the necessary properties have been described.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":" ","pages":"107-124"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/znc-2023-0181","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/27 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chitosan (CT), a natural, cationic, chemically stable molecule, biocompatible, biodegradable, nontoxic, polysaccharide derived from the deacetylation of chitin, has very uniquely surfaced as a material of promise for drug delivery and biomedical applications. For the oral, ocular, cutaneous, pulmonary, and nose-to-brain routes, CT-coated nanoparticles (CTCNPs) have numerous advantages, consisting of improved controlled drug release, physicochemical stability, improved cell and tissue interactions, and increased bioavailability and efficacy of the active ingredient. CTCNPs have a broad range of therapeutic properties including anticancer, antiviral, antifungal, anti-inflammatory, antibacterial properties, treating neurological disorders, and other diseases. This has led to substantial research into the many potential uses of CT as a drug delivery vehicle. CT has also been employed in a wide range of biomedical processes, including bone and cartilage tissue regeneration, ocular tissue regeneration, periodontal tissue regeneration, heart tissue regeneration, and wound healing. Additionally, CT has been used in cosmeceutical, bioimaging, immunization, and gene transfer applications. CT exhibits a number of biological activities, which are the basis for its remarkable potential for use as a drug delivery vehicle, and these activities are covered in detail in this article. The alterations applied to CT to obtain the necessary properties have been described.
期刊介绍:
A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) is an international scientific journal and a community resource for the emerging field of natural and natural-like products. The journal publishes original research on the isolation (including structure elucidation), bio-chemical synthesis and bioactivities of natural products, their biochemistry, pharmacology, biotechnology, and their biological activity and innovative developed computational methods for predicting the structure and/or function of natural products. A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) welcomes research papers in fields on the chemistry-biology boundary which address scientific ideas and approaches to generate and understand natural compounds on a molecular level and/or use them to stimulate and manipulate biological processes.