{"title":"The role of AI and machine learning in the diagnosis of Parkinson's disease and atypical parkinsonisms","authors":"","doi":"10.1016/j.parkreldis.2024.106986","DOIUrl":null,"url":null,"abstract":"<div><p>Parkinson's disease is a neurodegenerative movement disorder associated with motor and non-motor symptoms causing severe disability as the disease progresses. The development of biomarkers for Parkinson's disease to diagnose patients earlier and predict disease progression is imperative. As artificial intelligence and machine learning techniques efficiently process data and can handle multiple data types, we reviewed the literature to determine the extent to which these techniques have been applied to biomarkers for Parkinson's disease and movement disorders. We determined that the most applicable machine learning techniques are support vector machines and neural networks, depending on the size and type of the data being analyzed. Additionally, more complex machine learning techniques showed increased accuracy when compared to less complex techniques, especially when multiple machine learning models were combined. We can conclude that artificial intelligence and machine learning techniques may have the capacity to significantly boost diagnostic capacity in movement disorders and Parkinson's disease.</p></div>","PeriodicalId":19970,"journal":{"name":"Parkinsonism & related disorders","volume":"126 ","pages":"Article 106986"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1353802024009982/pdfft?md5=06f763ebfdd818081c210078287b7d5c&pid=1-s2.0-S1353802024009982-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parkinsonism & related disorders","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1353802024009982","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease is a neurodegenerative movement disorder associated with motor and non-motor symptoms causing severe disability as the disease progresses. The development of biomarkers for Parkinson's disease to diagnose patients earlier and predict disease progression is imperative. As artificial intelligence and machine learning techniques efficiently process data and can handle multiple data types, we reviewed the literature to determine the extent to which these techniques have been applied to biomarkers for Parkinson's disease and movement disorders. We determined that the most applicable machine learning techniques are support vector machines and neural networks, depending on the size and type of the data being analyzed. Additionally, more complex machine learning techniques showed increased accuracy when compared to less complex techniques, especially when multiple machine learning models were combined. We can conclude that artificial intelligence and machine learning techniques may have the capacity to significantly boost diagnostic capacity in movement disorders and Parkinson's disease.
期刊介绍:
Parkinsonism & Related Disorders publishes the results of basic and clinical research contributing to the understanding, diagnosis and treatment of all neurodegenerative syndromes in which Parkinsonism, Essential Tremor or related movement disorders may be a feature. Regular features will include: Review Articles, Point of View articles, Full-length Articles, Short Communications, Case Reports and Letter to the Editor.