{"title":"Silicon-induced biofilm improves peripheral nerve defect in rats mediated by VEGF/VEGFR2/ERK.","authors":"Jun Wang, Dong Mao, BeiChen Dai, YongJun Rui","doi":"10.1080/01616412.2024.2352232","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Injury of peripheral nerve capable of regeneration with much poorer prognosis affects people's life quality. The recovery of nerve function after transplantation for peripheral nerve injury remain a worldwide problem. Silicon-induced biofilms as vascularized biological conduits can promote nerve regeneration by encapsulating autologous or allogeneic nerve graft.<b>Objective:</b> We proposed to explore the effect of silicon-induced biofilms on nerves regeneration and whether the VEGF/VEGFR2/ERK pathway was involved in the present study.<b>Methods:</b> Biofilms around the transplanted nerves in peripheral nerve injury rats were induced by silicon. Vascularization and proteins related to VEGF/VEGFR2/ERK were measured. Pathology and morphology of nerves were investigated after encapsulating the transplanted nerves by silicon-induced biofilms.<b>Results:</b> Our results indicated that the biofilms induced by silicon for 6 weeks showed the most intensive vascularization and the optimal effect on nerve regeneration. Moreover, silicon-induced biofilms for 4, 6 and 8 weeks could significantly secrete VEGF with the highest content at week 6 after induction. VEGFR2, VEGF, p-VEGFR2, ERK1, ERK2, p-ERK1 and p-ERK2 were expressed in the biofilms. p-VEGFR2, p-ERK1 and p-ERK2 expression were different at each time point and significantly increased at week 6 compared with that at week 4 or week 8 which was consistent with that 6 week of was the optimum time for biofilms induction to improve the nerve repair after peripheral nerve injury.<b>Conclusion:</b> Our results suggested that combination of silicon-induced autologous vascularized biofilm and autologous transplantation may promote the repair of rat sciatic nerve defect quickly through VEGF/VEGFR2/ERK pathway.</p>","PeriodicalId":19131,"journal":{"name":"Neurological Research","volume":" ","pages":"743-751"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurological Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01616412.2024.2352232","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Injury of peripheral nerve capable of regeneration with much poorer prognosis affects people's life quality. The recovery of nerve function after transplantation for peripheral nerve injury remain a worldwide problem. Silicon-induced biofilms as vascularized biological conduits can promote nerve regeneration by encapsulating autologous or allogeneic nerve graft.Objective: We proposed to explore the effect of silicon-induced biofilms on nerves regeneration and whether the VEGF/VEGFR2/ERK pathway was involved in the present study.Methods: Biofilms around the transplanted nerves in peripheral nerve injury rats were induced by silicon. Vascularization and proteins related to VEGF/VEGFR2/ERK were measured. Pathology and morphology of nerves were investigated after encapsulating the transplanted nerves by silicon-induced biofilms.Results: Our results indicated that the biofilms induced by silicon for 6 weeks showed the most intensive vascularization and the optimal effect on nerve regeneration. Moreover, silicon-induced biofilms for 4, 6 and 8 weeks could significantly secrete VEGF with the highest content at week 6 after induction. VEGFR2, VEGF, p-VEGFR2, ERK1, ERK2, p-ERK1 and p-ERK2 were expressed in the biofilms. p-VEGFR2, p-ERK1 and p-ERK2 expression were different at each time point and significantly increased at week 6 compared with that at week 4 or week 8 which was consistent with that 6 week of was the optimum time for biofilms induction to improve the nerve repair after peripheral nerve injury.Conclusion: Our results suggested that combination of silicon-induced autologous vascularized biofilm and autologous transplantation may promote the repair of rat sciatic nerve defect quickly through VEGF/VEGFR2/ERK pathway.
期刊介绍:
Neurological Research is an international, peer-reviewed journal for reporting both basic and clinical research in the fields of neurosurgery, neurology, neuroengineering and neurosciences. It provides a medium for those who recognize the wider implications of their work and who wish to be informed of the relevant experience of others in related and more distant fields.
The scope of the journal includes:
•Stem cell applications
•Molecular neuroscience
•Neuropharmacology
•Neuroradiology
•Neurochemistry
•Biomathematical models
•Endovascular neurosurgery
•Innovation in neurosurgery.