Molecular characterization and distribution of motilin and motilin receptor in the Japanese medaka Oryzias latipes.

IF 3.2 3区 生物学 Q3 CELL BIOLOGY
Cell and Tissue Research Pub Date : 2024-07-01 Epub Date: 2024-05-10 DOI:10.1007/s00441-024-03896-5
Morio Azuma, Norifumi Konno, Ichiro Sakata, Taka-Aki Koshimizu, Hiroyuki Kaiya
{"title":"Molecular characterization and distribution of motilin and motilin receptor in the Japanese medaka Oryzias latipes.","authors":"Morio Azuma, Norifumi Konno, Ichiro Sakata, Taka-Aki Koshimizu, Hiroyuki Kaiya","doi":"10.1007/s00441-024-03896-5","DOIUrl":null,"url":null,"abstract":"<p><p>Motilin (MLN) is a peptide hormone originally isolated from the mucosa of the porcine intestine. Its orthologs have been identified in various vertebrates. Although MLN regulates gastrointestinal motility in tetrapods from amphibians to mammals, recent studies indicate that MLN is not involved in the regulation of isolated intestinal motility in zebrafish, at least in vitro. To determine the unknown function of MLN in teleosts, we examined the expression of MLN and the MLN receptor (MLNR) at the cellular level in Japanese medaka (Oryzias latipes). Quantitative PCR revealed that mln mRNA was limitedly expressed in the gut, whereas mlnr mRNA was not detected in the gut but was expressed in the brain and kidney. By in situ hybridization and immunohistochemistry, mlnr mRNA was detected in the dopaminergic neurons of the area postrema in the brain and the noradrenaline-producing cells in the interrenal gland of the kidney. Furthermore, we observed efferent projections of mlnr-expressing dopaminergic neurons in the lobus vagi (XL) and nucleus motorius nervi vagi (NXm) of the medulla oblongata by establishing a transgenic medaka expressing the enhanced green fluorescence protein driven by the mlnr promoter. The expression of dopamine receptor mRNAs in the XL and cholinergic neurons in NXm was confirmed by in situ hybridization. These results indicate novel sites of MLN activity other than the gastrointestinal tract. MLN may exert central and peripheral actions through the regulation of catecholamine release in medaka.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-024-03896-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motilin (MLN) is a peptide hormone originally isolated from the mucosa of the porcine intestine. Its orthologs have been identified in various vertebrates. Although MLN regulates gastrointestinal motility in tetrapods from amphibians to mammals, recent studies indicate that MLN is not involved in the regulation of isolated intestinal motility in zebrafish, at least in vitro. To determine the unknown function of MLN in teleosts, we examined the expression of MLN and the MLN receptor (MLNR) at the cellular level in Japanese medaka (Oryzias latipes). Quantitative PCR revealed that mln mRNA was limitedly expressed in the gut, whereas mlnr mRNA was not detected in the gut but was expressed in the brain and kidney. By in situ hybridization and immunohistochemistry, mlnr mRNA was detected in the dopaminergic neurons of the area postrema in the brain and the noradrenaline-producing cells in the interrenal gland of the kidney. Furthermore, we observed efferent projections of mlnr-expressing dopaminergic neurons in the lobus vagi (XL) and nucleus motorius nervi vagi (NXm) of the medulla oblongata by establishing a transgenic medaka expressing the enhanced green fluorescence protein driven by the mlnr promoter. The expression of dopamine receptor mRNAs in the XL and cholinergic neurons in NXm was confirmed by in situ hybridization. These results indicate novel sites of MLN activity other than the gastrointestinal tract. MLN may exert central and peripheral actions through the regulation of catecholamine release in medaka.

Abstract Image

日本青鳉体内动情素和动情素受体的分子特征和分布。
动情素(MLN)是一种肽类激素,最初是从猪肠粘膜中分离出来的。它的同源物已在多种脊椎动物中被发现。虽然 MLN 在从两栖动物到哺乳动物的四足动物中调节胃肠道运动,但最近的研究表明,MLN 并不参与斑马鱼离体肠道运动的调节,至少在体外是如此。为了确定 MLN 在远洋鱼类中的未知功能,我们研究了 MLN 和 MLN 受体(MLNR)在日本青鳉(Oryzias latipes)细胞水平的表达。定量 PCR 发现 mln mRNA 仅在肠道中表达,而 mlnr mRNA 在肠道中未检测到,但在大脑和肾脏中表达。通过原位杂交和免疫组化,我们在大脑后区的多巴胺能神经元和肾脏肾间质的去甲肾上腺素分泌细胞中检测到了 mlnr mRNA。此外,我们通过建立表达由 mlnr 启动子驱动的增强型绿色荧光蛋白的转基因青鳉,在延髓的迷走神经叶(XL)和迷走神经运动核(NXm)中观察到了表达 mlnr 的多巴胺能神经元的传出投射。原位杂交证实了多巴胺受体 mRNA 在 NXm 的 XL 和胆碱能神经元中的表达。这些结果表明,除胃肠道外,MLN还有新的活动场所。MLN可能通过调节青鳉体内儿茶酚胺的释放而发挥中枢和外周作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell and Tissue Research
Cell and Tissue Research 生物-细胞生物学
CiteScore
7.00
自引率
2.80%
发文量
142
审稿时长
1 months
期刊介绍: The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include: - neurobiology - neuroendocrinology - endocrinology - reproductive biology - skeletal and immune systems - development - stem cells - muscle biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信