Sandra Cabrera, Ángeles García-Vicente, Pamela Gutiérrez, Andrea Sánchez, Miguel Gaxiola, Carolina Rodríguez-Bobadilla, Moisés Selman, Annie Pardo
{"title":"Increased ER Stress and Unfolded Protein Response Activation in Epithelial and Inflammatory Cells in Hypersensitivity Pneumonitis.","authors":"Sandra Cabrera, Ángeles García-Vicente, Pamela Gutiérrez, Andrea Sánchez, Miguel Gaxiola, Carolina Rodríguez-Bobadilla, Moisés Selman, Annie Pardo","doi":"10.1369/00221554241251915","DOIUrl":null,"url":null,"abstract":"<p><p>Several types of cytotoxic insults disrupt endoplasmic reticulum (ER) homeostasis, cause ER stress, and activate the unfolded protein response (UPR). The role of ER stress and UPR activation in hypersensitivity pneumonitis (HP) has not been described. HP is an immune-mediated interstitial lung disease that develops following repeated inhalation of various antigens in susceptible and sensitized individuals. The aim of this study was to investigate the lung expression and localization of the key effectors of the UPR, BiP/GRP78, CHOP, and sXBP1 in HP patients compared with control subjects. Furthermore, we developed a mouse model of HP to determine whether ER stress and UPR pathway are induced during this pathogenesis. In human control lungs, we observed weak positive staining for BiP in some epithelial cells and macrophages, while sXBP1 and CHOP were negative. Conversely, strong BiP, sXBP1- and CHOP-positive alveolar and bronchial epithelial, and inflammatory cells were identified in HP lungs. We also found apoptosis and autophagy markers colocalization with UPR proteins in HP lungs. Similar results were obtained in lungs from an HP mouse model. Our findings suggest that the UPR pathway is associated with the pathogenesis of HP.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11107439/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1369/00221554241251915","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Several types of cytotoxic insults disrupt endoplasmic reticulum (ER) homeostasis, cause ER stress, and activate the unfolded protein response (UPR). The role of ER stress and UPR activation in hypersensitivity pneumonitis (HP) has not been described. HP is an immune-mediated interstitial lung disease that develops following repeated inhalation of various antigens in susceptible and sensitized individuals. The aim of this study was to investigate the lung expression and localization of the key effectors of the UPR, BiP/GRP78, CHOP, and sXBP1 in HP patients compared with control subjects. Furthermore, we developed a mouse model of HP to determine whether ER stress and UPR pathway are induced during this pathogenesis. In human control lungs, we observed weak positive staining for BiP in some epithelial cells and macrophages, while sXBP1 and CHOP were negative. Conversely, strong BiP, sXBP1- and CHOP-positive alveolar and bronchial epithelial, and inflammatory cells were identified in HP lungs. We also found apoptosis and autophagy markers colocalization with UPR proteins in HP lungs. Similar results were obtained in lungs from an HP mouse model. Our findings suggest that the UPR pathway is associated with the pathogenesis of HP.
多种类型的细胞毒性损伤会破坏内质网(ER)的平衡,导致ER应激,并激活未折叠蛋白反应(UPR)。ER应激和UPR激活在超敏性肺炎(HP)中的作用尚未被描述。超敏性肺炎是一种免疫介导的间质性肺病,易感者和致敏者在反复吸入各种抗原后发病。本研究的目的是,与对照组相比,调查 HP 患者肺部 UPR 的关键效应物 BiP/GRP78、CHOP 和 sXBP1 的表达和定位情况。此外,我们还建立了一个 HP 小鼠模型,以确定 ER 应激和 UPR 通路是否在该发病机制中被诱导。在人类对照组肺部,我们观察到一些上皮细胞和巨噬细胞的 BiP 染色呈弱阳性,而 sXBP1 和 CHOP 则呈阴性。相反,在 HP 肺中发现了 BiP、sXBP1 和 CHOP 强阳性的肺泡和支气管上皮细胞以及炎症细胞。我们还在 HP 肺中发现了与 UPR 蛋白共定位的细胞凋亡和自噬标记物。在 HP 小鼠模型的肺中也得到了类似的结果。我们的研究结果表明,UPR 通路与 HP 的发病机制有关。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.