{"title":"Genetically optimizing soybean nodulation improves yield and protein content","authors":"Xiangbin Zhong, Jie Wang, Xiaolei Shi, Mengyan Bai, Cuicui Yuan, Chenlin Cai, Nan Wang, Xiaomin Zhu, Huaqin Kuang, Xin Wang, Jiaqing Su, Xin He, Xiao Liu, Wenqiang Yang, Chunyan Yang, Fanjiang Kong, Ertao Wang, Yuefeng Guan","doi":"10.1038/s41477-024-01696-x","DOIUrl":null,"url":null,"abstract":"Symbiotic nitrogen fixation in legume nodules requires substantial energy investment from host plants, and soybean (Glycine max (L.) supernodulation mutants show stunting and yield penalties due to overconsumption of carbon sources. We obtained soybean mutants differing in their nodulation ability, among which rhizobially induced cle1a/2a (ric1a/2a) has a moderate increase in nodule number, balanced carbon allocation, and enhanced carbon and nitrogen acquisition. In multi-year and multi-site field trials in China, two ric1a/2a lines had improved grain yield, protein content and sustained oil content, demonstrating that gene editing towards optimal nodulation improves soybean yield and quality. This study shows that optimizing soybean nodulation, rather than supernodulation, through editing improves N and C assimilation by balancing source–sink relationships. As a result, soybean yield and protein content are simultaneously increased in field conditions.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 5","pages":"736-742"},"PeriodicalIF":15.8000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41477-024-01696-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Symbiotic nitrogen fixation in legume nodules requires substantial energy investment from host plants, and soybean (Glycine max (L.) supernodulation mutants show stunting and yield penalties due to overconsumption of carbon sources. We obtained soybean mutants differing in their nodulation ability, among which rhizobially induced cle1a/2a (ric1a/2a) has a moderate increase in nodule number, balanced carbon allocation, and enhanced carbon and nitrogen acquisition. In multi-year and multi-site field trials in China, two ric1a/2a lines had improved grain yield, protein content and sustained oil content, demonstrating that gene editing towards optimal nodulation improves soybean yield and quality. This study shows that optimizing soybean nodulation, rather than supernodulation, through editing improves N and C assimilation by balancing source–sink relationships. As a result, soybean yield and protein content are simultaneously increased in field conditions.
期刊介绍:
Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.