{"title":"Local behaviors of Fourier expansions for functions of limited regularities","authors":"Shunfeng Yang, Shuhuang Xiang","doi":"10.1007/s10444-024-10136-5","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the explicit formula of the pointwise error of Fourier projection approximation and by applying van der Corput-type Lemma, optimal convergence rates for periodic functions with different degrees of smoothness are established. It shows that the convergence rate enjoys a decay rate one order higher in the smooth parts than that at the singularities. In addition, it also depends on the distance from the singularities. Ample numerical experiments illustrate the perfect coincidence with the estimates.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10136-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the explicit formula of the pointwise error of Fourier projection approximation and by applying van der Corput-type Lemma, optimal convergence rates for periodic functions with different degrees of smoothness are established. It shows that the convergence rate enjoys a decay rate one order higher in the smooth parts than that at the singularities. In addition, it also depends on the distance from the singularities. Ample numerical experiments illustrate the perfect coincidence with the estimates.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.