Common-mode current reduction in EMP coupling with the star-quad cable having a reference conductor

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Anmol Abbas Lodhi, Yu Zhu, Oussama Gassab
{"title":"Common-mode current reduction in EMP coupling with the star-quad cable having a reference conductor","authors":"Anmol Abbas Lodhi,&nbsp;Yu Zhu,&nbsp;Oussama Gassab","doi":"10.1002/jnm.3238","DOIUrl":null,"url":null,"abstract":"<p>The coupling of electromagnetic pulse (EMP) with the star-quad cable having reference conductor is analyzed by using the proposed model, which is based upon multi-conductor transmission line theory. Expressions for common-mode (CM) and differential-mode (DM) currents are developed. Two cases are mainly discussed: the first case is the star-quad cable with a central reference conductor, and the second case with the outside reference conductor. A rigorous comparison between these two cases shows that when the reference conductor is placed at the center, the magnitude of CM current is reduced dramatically, which is beneficial for electromagnetic compatibility (EMC). The CM current magnitude of the outside reference conductor is relatively very high due to the large CM current loop area, which is the least possible for the central reference conductor. There is no significant change in the DM current magnitude for both cases because the DM current has no direct dependence on the CM current loop area. A commercial software, FEKO, which utilizes the method of momentum (MoM), is used to compare the results of our proposed method, which are in good agreement.</p>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3238","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The coupling of electromagnetic pulse (EMP) with the star-quad cable having reference conductor is analyzed by using the proposed model, which is based upon multi-conductor transmission line theory. Expressions for common-mode (CM) and differential-mode (DM) currents are developed. Two cases are mainly discussed: the first case is the star-quad cable with a central reference conductor, and the second case with the outside reference conductor. A rigorous comparison between these two cases shows that when the reference conductor is placed at the center, the magnitude of CM current is reduced dramatically, which is beneficial for electromagnetic compatibility (EMC). The CM current magnitude of the outside reference conductor is relatively very high due to the large CM current loop area, which is the least possible for the central reference conductor. There is no significant change in the DM current magnitude for both cases because the DM current has no direct dependence on the CM current loop area. A commercial software, FEKO, which utilizes the method of momentum (MoM), is used to compare the results of our proposed method, which are in good agreement.

利用具有基准导体的星形四芯电缆降低电磁脉冲耦合中的共模电流
利用基于多导体传输线理论提出的模型,分析了电磁脉冲(EMP)与带有参考导体的星形四方电缆的耦合。建立了共模(CM)和差模(DM)电流的表达式。主要讨论了两种情况:第一种情况是带有中央参考导体的星形四方电缆,第二种情况是带有外部参考导体的星形四方电缆。对这两种情况的严格比较表明,当参考导体位于中心时,CM 电流的大小会显著减小,这有利于电磁兼容性(EMC)。外侧参考导体的 CM 电流幅值相对较高,这是因为 CM 电流环面积较大,而中心参考导体的 CM 电流幅值最小。由于 DM 电流与 CM 电流回路面积没有直接关系,因此这两种情况下的 DM 电流值没有明显变化。利用动量法(MoM)的商业软件 FEKO 对我们提出的方法的结果进行了比较,结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
6.20%
发文量
101
审稿时长
>12 weeks
期刊介绍: Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models. The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics. Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信