Assessment of Lidar Point Cloud Simulation Using Phenomenological Range-Reflectivity Limits for Feature Validation

Relindis Rott;Selim Solmaz
{"title":"Assessment of Lidar Point Cloud Simulation Using Phenomenological Range-Reflectivity Limits for Feature Validation","authors":"Relindis Rott;Selim Solmaz","doi":"10.1109/OJIM.2024.3390214","DOIUrl":null,"url":null,"abstract":"We present an assessment of simulated lidar point clouds based on different phenomenological range-reflectivity models. In sensor model development, the validation of individual model features is favorable. For lidar sensors, range limits depend on surface reflectivities. Two phenomenological feature models are derived from the lidar range equation, for clear and adverse weather conditions. The underlying parameters are the maximum ranges for best environment conditions, based on sensor datasheets, and a maximum range measurement for attenuation conditions. Furthermore, an assessment of different feature models is needed, similar to unit tests. Therefore, resulting point clouds are compared with respect to the total number of corresponding points and the number of points with no correspondences for pair-wise cloud comparison. Applications are presented using a point cloud lidar model. Results of the point cloud comparison are demonstrated for a single scene or time step and an entire scenario of 40 time steps. When a reference point cloud is provided by the sensor manufacturer, feature validation becomes possible.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"3 ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10504530","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Instrumentation and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10504530/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an assessment of simulated lidar point clouds based on different phenomenological range-reflectivity models. In sensor model development, the validation of individual model features is favorable. For lidar sensors, range limits depend on surface reflectivities. Two phenomenological feature models are derived from the lidar range equation, for clear and adverse weather conditions. The underlying parameters are the maximum ranges for best environment conditions, based on sensor datasheets, and a maximum range measurement for attenuation conditions. Furthermore, an assessment of different feature models is needed, similar to unit tests. Therefore, resulting point clouds are compared with respect to the total number of corresponding points and the number of points with no correspondences for pair-wise cloud comparison. Applications are presented using a point cloud lidar model. Results of the point cloud comparison are demonstrated for a single scene or time step and an entire scenario of 40 time steps. When a reference point cloud is provided by the sensor manufacturer, feature validation becomes possible.
利用现象学范围-反射率极限对激光雷达点云模拟进行评估以验证特征
我们介绍了基于不同现象学测距反射率模型的模拟激光雷达点云评估。在传感器模型开发过程中,对单个模型特征的验证是非常有利的。对于激光雷达传感器来说,测距极限取决于表面反射率。根据激光雷达测距方程推导出晴朗和恶劣天气条件下的两个现象特征模型。基本参数是根据传感器数据表得出的最佳环境条件下的最大测距,以及衰减条件下的最大测距。此外,还需要对不同的特征模型进行评估,类似于单元测试。因此,要对所得到的点云进行成对比较,比较对应点的总数和无对应点的数量。使用点云激光雷达模型介绍了相关应用。演示了单个场景或时间步和 40 个时间步的整个场景的点云比较结果。当传感器制造商提供参考点云时,特征验证就成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信