{"title":"Rapid sequential detection of Al3+ and glyphosate using an “Off-On-Off” fluorescent probe based on salicylate modified layered double hydroxides","authors":"Zilin Meng, Zichen Kuang, Rui Song, Jiaxuan Fan, Xingyi Wu, Canping Pan, Runhua Lu, Wenfeng Zhou, Haixiang Gao","doi":"10.1016/j.saa.2024.124358","DOIUrl":null,"url":null,"abstract":"<div><p>A fluorescent probe based on salicylate modified layered double hydroxide (LDH-SA) is presented, enabling the swift sequential detection of Al<sup>3+</sup>, fosetyl-Al and glyphosate in aqueous environment. The probe was synthesized using a simple co-precipitation procedure, and its properties and synthesis conditions were thoroughly characterized and optimized. A unique “off-on-off” fluorescent response was observed when the probe sequentially interacted with Al<sup>3+</sup> and glyphosate, and the detection method based on this phenomenon was established. The limits of detection for Al<sup>3+</sup> and glyphosate were determined as 0.03 μmol/L and 0.03 mg/L, respectively, with rapid detection periods of one minute and four minutes. The LDH-SA/Al<sup>3+</sup> complex requires Al<sup>3+</sup> to generate a chelation-gathered fluorescence effect, which is the mechanism by which it quenches LDH-SA. This is possible due to the inhibition of excited-state intramolecular proton transfer and photoinduced electron transfer processes within LDH-SA after incorporating Al<sup>3+</sup>. Upon interaction with glyphosate, competitive complexation between glyphosate and Al<sup>3+</sup> is initiated, which leads to a recovery of the fluorescence spectrum of LDH-SA and demonstrating the “off-on-off” behavior. An “INHIBIT” logic gate system was devised utilizing the response, indicating potential applications in fluorescence-based devices. Such a rapid, sequential detection capacity is impressive. It attests to the utility of LDH-SA as a probe for Al<sup>3+</sup> or glyphosate, and suggests promise for applications in pollutant analysis or environmental monitoring applications.</p></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"317 ","pages":"Article 124358"},"PeriodicalIF":4.3000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142524005249","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
A fluorescent probe based on salicylate modified layered double hydroxide (LDH-SA) is presented, enabling the swift sequential detection of Al3+, fosetyl-Al and glyphosate in aqueous environment. The probe was synthesized using a simple co-precipitation procedure, and its properties and synthesis conditions were thoroughly characterized and optimized. A unique “off-on-off” fluorescent response was observed when the probe sequentially interacted with Al3+ and glyphosate, and the detection method based on this phenomenon was established. The limits of detection for Al3+ and glyphosate were determined as 0.03 μmol/L and 0.03 mg/L, respectively, with rapid detection periods of one minute and four minutes. The LDH-SA/Al3+ complex requires Al3+ to generate a chelation-gathered fluorescence effect, which is the mechanism by which it quenches LDH-SA. This is possible due to the inhibition of excited-state intramolecular proton transfer and photoinduced electron transfer processes within LDH-SA after incorporating Al3+. Upon interaction with glyphosate, competitive complexation between glyphosate and Al3+ is initiated, which leads to a recovery of the fluorescence spectrum of LDH-SA and demonstrating the “off-on-off” behavior. An “INHIBIT” logic gate system was devised utilizing the response, indicating potential applications in fluorescence-based devices. Such a rapid, sequential detection capacity is impressive. It attests to the utility of LDH-SA as a probe for Al3+ or glyphosate, and suggests promise for applications in pollutant analysis or environmental monitoring applications.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.