Katie Vollen , Chengsong Zhao , Jose M Alonso, Anna N Stepanova
{"title":"Sourcing DNA parts for synthetic biology applications in plants","authors":"Katie Vollen , Chengsong Zhao , Jose M Alonso, Anna N Stepanova","doi":"10.1016/j.copbio.2024.103140","DOIUrl":null,"url":null,"abstract":"<div><p>Transgenic approaches are now standard in plant biology research aiming to characterize gene function or improve crops. Recent advances in DNA synthesis and assembly make constructing transgenes a routine task. What remains nontrivial is the selection of the DNA parts and optimization of the transgene design. Early career researchers and seasoned molecular biologists alike often face difficult decisions on what promoter or terminator to use, what tag to include, and where to place it. This review aims to inform about the current approaches being employed to identify and characterize DNA parts with the desired functionalities and give general advice on basic construct design. Furthermore, we hope to share the excitement about new experimental and computational tools being developed in this field.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"87 ","pages":"Article 103140"},"PeriodicalIF":7.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924000764","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Transgenic approaches are now standard in plant biology research aiming to characterize gene function or improve crops. Recent advances in DNA synthesis and assembly make constructing transgenes a routine task. What remains nontrivial is the selection of the DNA parts and optimization of the transgene design. Early career researchers and seasoned molecular biologists alike often face difficult decisions on what promoter or terminator to use, what tag to include, and where to place it. This review aims to inform about the current approaches being employed to identify and characterize DNA parts with the desired functionalities and give general advice on basic construct design. Furthermore, we hope to share the excitement about new experimental and computational tools being developed in this field.
转基因方法现已成为植物生物学研究的标准方法,目的是鉴定基因功能或改良作物。DNA 合成和组装技术的最新进展使转基因的构建成为一项常规工作。但 DNA 部分的选择和转基因设计的优化仍然不是一件容易的事。无论是职业生涯初期的研究人员,还是经验丰富的分子生物学家,都经常面临着难以抉择的问题:使用什么样的启动子或终止子、加入什么样的标记以及将标记置于何处。本综述旨在介绍目前采用的方法,以识别和鉴定具有所需功能的 DNA 部分,并就基本构建设计提供一般性建议。此外,我们还希望与大家分享这一领域正在开发的新实验和计算工具。
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.