{"title":"Oridonin Attenuates Diabetes‑induced Renal Fibrosis via the Inhibition of TXNIP/NLRP3 and NF‑κB Pathways by Activating PPARγ in Rats.","authors":"Gengzhen Huang, Yaodan Zhang, Yingying Zhang, Xiaotao Zhou, Yuan Xu, Huiting Wei, Xian Chen, Yuerong Ma","doi":"10.1055/a-2322-7438","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Oridonin possesses remarkable anti-inflammatory, immunoregulatory properties. However, the renoprotective effects of oridonin and the underlying molecular mechanisms in diabetic nephropathy (DN). We hypothesized that oridonin could ameliorate diabetes‑induced renal fibrosis.</p><p><strong>Methods: </strong>Streptozocin (STZ)-induced diabetic rats were provided with a high-fat diet to establish a type 2 diabetes mellitus (T2DM) animal model, and then treated with Oridonin (10, 20 mg/kg/day) for two weeks. Kidney function and renal fibrosis were assessed. High glucose-induced human renal proximal tubule epithelial cells (HK-2) were also treated with oridonin. The expression of inflammatory factors and fibrotic markers were analyzed.</p><p><strong>Results: </strong>Oridonin treatment preserved kidney function and markedly limited the renal fibrosis size in diabetic rats. The renal fibrotic markers were inhibited in the oridonin 10 mg/kg/day and 20 mg/kg/day groups compared to the T2DM group. The expression of thioredoxin-interacting proteins/ nod-like receptor protein-3 (TXNIP/NLRP3) and nuclear factor (NF)‑κB pathway decreased, while that of peroxisome proliferator-activated receptor-gamma (PPARγ) increased in the oridonin treatment group compared to the non-treated group. In vitro, PPARγ intervention could significantly regulate the effect of oridonin on the high glucose-induced inflammatory changes in HK-2 cells.</p><p><strong>Conclusion: </strong>Oridonin reduces renal fibrosis and preserves kidney function via the inhibition of TXNIP/NLRP3 and NF‑κB pathways by activating PPARγ in rat T2DM model, which indicates potential effect of oridonin in the treatment of DN.</p>","PeriodicalId":94001,"journal":{"name":"Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association","volume":" ","pages":"536-544"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2322-7438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Oridonin possesses remarkable anti-inflammatory, immunoregulatory properties. However, the renoprotective effects of oridonin and the underlying molecular mechanisms in diabetic nephropathy (DN). We hypothesized that oridonin could ameliorate diabetes‑induced renal fibrosis.
Methods: Streptozocin (STZ)-induced diabetic rats were provided with a high-fat diet to establish a type 2 diabetes mellitus (T2DM) animal model, and then treated with Oridonin (10, 20 mg/kg/day) for two weeks. Kidney function and renal fibrosis were assessed. High glucose-induced human renal proximal tubule epithelial cells (HK-2) were also treated with oridonin. The expression of inflammatory factors and fibrotic markers were analyzed.
Results: Oridonin treatment preserved kidney function and markedly limited the renal fibrosis size in diabetic rats. The renal fibrotic markers were inhibited in the oridonin 10 mg/kg/day and 20 mg/kg/day groups compared to the T2DM group. The expression of thioredoxin-interacting proteins/ nod-like receptor protein-3 (TXNIP/NLRP3) and nuclear factor (NF)‑κB pathway decreased, while that of peroxisome proliferator-activated receptor-gamma (PPARγ) increased in the oridonin treatment group compared to the non-treated group. In vitro, PPARγ intervention could significantly regulate the effect of oridonin on the high glucose-induced inflammatory changes in HK-2 cells.
Conclusion: Oridonin reduces renal fibrosis and preserves kidney function via the inhibition of TXNIP/NLRP3 and NF‑κB pathways by activating PPARγ in rat T2DM model, which indicates potential effect of oridonin in the treatment of DN.