Matthew C D Bailey, Johann F du Hoffmann, Jeffrey W Dalley
{"title":"A multimodal approach connecting cortical and behavioural responses to the visual continuity illusion.","authors":"Matthew C D Bailey, Johann F du Hoffmann, Jeffrey W Dalley","doi":"10.1177/23982128241251685","DOIUrl":null,"url":null,"abstract":"<p><p>In their recently published study, Gil, Valente and Shemesh combined behaviour, functional magnetic resonance imaging, electroencephalography and causal interventions to establish and validate a cortical processing substrate underlying the transition from static to dynamic visual states in the rat. Their research highlights the superior colliculus as the primary mediator of visual temporal discrimination by showing a direct correlation between behavioural and cortically derived flicker fusion frequency thresholds. This work provides the first empirical evidence addressing the previously established disparity between behavioural and cortically derived flicker fusion frequency thresholds. It demonstrates how important convergent multimodal approaches are to mapping and validating previously disputed cortical pathways. Here, we discuss and evaluate their work, suggesting possible future applications in the field of behavioural neuroscience.</p>","PeriodicalId":72444,"journal":{"name":"Brain and neuroscience advances","volume":"8 ","pages":"23982128241251685"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11077936/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and neuroscience advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23982128241251685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In their recently published study, Gil, Valente and Shemesh combined behaviour, functional magnetic resonance imaging, electroencephalography and causal interventions to establish and validate a cortical processing substrate underlying the transition from static to dynamic visual states in the rat. Their research highlights the superior colliculus as the primary mediator of visual temporal discrimination by showing a direct correlation between behavioural and cortically derived flicker fusion frequency thresholds. This work provides the first empirical evidence addressing the previously established disparity between behavioural and cortically derived flicker fusion frequency thresholds. It demonstrates how important convergent multimodal approaches are to mapping and validating previously disputed cortical pathways. Here, we discuss and evaluate their work, suggesting possible future applications in the field of behavioural neuroscience.