Directly imaging spin polarons in a kinetically frustrated Hubbard system

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2024-05-08 DOI:10.1038/s41586-024-07356-6
Max L. Prichard, Benjamin M. Spar, Ivan Morera, Eugene Demler, Zoe Z. Yan, Waseem S. Bakr
{"title":"Directly imaging spin polarons in a kinetically frustrated Hubbard system","authors":"Max L. Prichard, Benjamin M. Spar, Ivan Morera, Eugene Demler, Zoe Z. Yan, Waseem S. Bakr","doi":"10.1038/s41586-024-07356-6","DOIUrl":null,"url":null,"abstract":"The emergence of quasiparticles in quantum many-body systems underlies the rich phenomenology in many strongly interacting materials. In the context of doped Mott insulators, magnetic polarons are quasiparticles that usually arise from an interplay between the kinetic energy of doped charge carriers and superexchange spin interactions1–8. However, in kinetically frustrated lattices, itinerant spin polarons—bound states of a dopant and a spin flip—have been theoretically predicted even in the absence of superexchange coupling9–14. Despite their important role in the theory of kinetic magnetism, a microscopic observation of these polarons is lacking. Here we directly image itinerant spin polarons in a triangular-lattice Hubbard system realized with ultracold atoms, revealing enhanced antiferromagnetic correlations in the local environment of a hole dopant. In contrast, around a charge dopant, we find ferromagnetic correlations, a manifestation of the elusive Nagaoka effect15,16. We study the evolution of these correlations with interactions and doping, and use higher-order correlation functions to further elucidate the relative contributions of superexchange and kinetic mechanisms. The robustness of itinerant spin polarons at high temperature paves the way for exploring potential mechanisms for hole pairing and superconductivity in frustrated systems10,11. Furthermore, our work provides microscopic insights into related phenomena in triangular-lattice moiré materials17–20. A triangular-lattice Hubbard system realized with ultracold atoms is used to directly image spin polarons, revealing ferromagnetic correlations around a charge dopant, a manifestation of the Nagaoka effect.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"629 8011","pages":"323-328"},"PeriodicalIF":50.5000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-07356-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of quasiparticles in quantum many-body systems underlies the rich phenomenology in many strongly interacting materials. In the context of doped Mott insulators, magnetic polarons are quasiparticles that usually arise from an interplay between the kinetic energy of doped charge carriers and superexchange spin interactions1–8. However, in kinetically frustrated lattices, itinerant spin polarons—bound states of a dopant and a spin flip—have been theoretically predicted even in the absence of superexchange coupling9–14. Despite their important role in the theory of kinetic magnetism, a microscopic observation of these polarons is lacking. Here we directly image itinerant spin polarons in a triangular-lattice Hubbard system realized with ultracold atoms, revealing enhanced antiferromagnetic correlations in the local environment of a hole dopant. In contrast, around a charge dopant, we find ferromagnetic correlations, a manifestation of the elusive Nagaoka effect15,16. We study the evolution of these correlations with interactions and doping, and use higher-order correlation functions to further elucidate the relative contributions of superexchange and kinetic mechanisms. The robustness of itinerant spin polarons at high temperature paves the way for exploring potential mechanisms for hole pairing and superconductivity in frustrated systems10,11. Furthermore, our work provides microscopic insights into related phenomena in triangular-lattice moiré materials17–20. A triangular-lattice Hubbard system realized with ultracold atoms is used to directly image spin polarons, revealing ferromagnetic correlations around a charge dopant, a manifestation of the Nagaoka effect.

Abstract Image

Abstract Image

直接成像动力学受挫哈伯德体系中的自旋极子。
量子多体系统中出现的准粒子是许多强相互作用材料中丰富现象的基础。在掺杂莫特绝缘体中,磁极子是一种准粒子,通常产生于掺杂电荷载流子的动能与超交换自旋相互作用之间的相互作用1-8。然而,在动力学受挫晶格中,巡回自旋极子--掺杂物和自旋翻转的结合态--甚至在没有超交换耦合的情况下也已被理论预言9-14。尽管它们在动磁理论中扮演着重要角色,但目前还缺乏对这些极子的微观观察。在这里,我们直接对用超冷原子实现的三角形晶格哈巴德系统中的巡回自旋极子进行了成像,揭示了在掺杂空穴的局部环境中增强的反铁磁关联。相反,在电荷掺杂物周围,我们发现了铁磁相关性,这是难以捉摸的长冈效应的一种表现形式15,16。我们研究了这些相关性随相互作用和掺杂的演变,并利用高阶相关函数进一步阐明了超交换和动力学机制的相对贡献。巡回自旋极子在高温下的稳健性为探索沮陷系统中空穴配对和超导的潜在机制铺平了道路10,11。此外,我们的研究还为三角晶格摩尔材料中的相关现象提供了微观见解17-20。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信