{"title":"Effect of Heparan Sulfate on Vasculogenesis and Dentinogenesis of Dental Pulp Stem Cells","authors":"","doi":"10.1016/j.joen.2024.04.015","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Heparan sulfate (HS) is a major component of dental pulp tissue. We previously reported that inhibiting HS biosynthesis impedes endothelial differentiation of dental pulp stem cells (DPSCs). However, the underlying mechanisms by which exogenous HS induces DPSC differentiation and pulp tissue regeneration remain unknown. This study explores the impact of exogenous HS on vasculogenesis and dentinogenesis of DPSCs both <em>in vitro</em> and <em>in vivo</em>.</p></div><div><h3>Methods</h3><p>Human-derived DPSCs were cultured in endothelial and odontogenic differentiation media and treated with HS. Endothelial differentiation of DPSCs was investigated by real-time polymerase chain reaction and capillary sprouting assay. Odontogenic differentiation was assessed through real-time polymerase chain reaction and detection of mineralized dentin-like deposition. Additionally, the influence of HS on pulp tissue was assessed with a direct pulp capping model, in which HS was delivered to exposed pulp tissue in rats. Gelatin sponges were loaded with either phosphate-buffered saline or 10<sup>1</sup>–10<sup>2</sup> μg/mL HS and placed onto the pulp tissue. Following a 28-day period, tissues were investigated by histological analysis and micro–computed tomography imaging.</p></div><div><h3>Results</h3><p>HS treatment markedly increased expression levels of key endothelial and odontogenic genes, enhanced the formation of capillary-like structures, and promoted the deposition of mineralized matrices. Treatment of exposed pulp tissue with HS in the <em>in vivo</em> pulp capping study induced formation of capillaries and reparative dentin.</p></div><div><h3>Conclusions</h3><p>Exogenous HS effectively promoted vasculogenesis and dentinogenesis of DPSCs <em>in vitro</em> and induced reparative dentin formation <em>in vivo</em>, highlighting its therapeutic potential for pulp capping treatment.</p></div>","PeriodicalId":15703,"journal":{"name":"Journal of endodontics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0099239924002784/pdfft?md5=4c09851d169e5090a824ba30e03743b2&pid=1-s2.0-S0099239924002784-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of endodontics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0099239924002784","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Heparan sulfate (HS) is a major component of dental pulp tissue. We previously reported that inhibiting HS biosynthesis impedes endothelial differentiation of dental pulp stem cells (DPSCs). However, the underlying mechanisms by which exogenous HS induces DPSC differentiation and pulp tissue regeneration remain unknown. This study explores the impact of exogenous HS on vasculogenesis and dentinogenesis of DPSCs both in vitro and in vivo.
Methods
Human-derived DPSCs were cultured in endothelial and odontogenic differentiation media and treated with HS. Endothelial differentiation of DPSCs was investigated by real-time polymerase chain reaction and capillary sprouting assay. Odontogenic differentiation was assessed through real-time polymerase chain reaction and detection of mineralized dentin-like deposition. Additionally, the influence of HS on pulp tissue was assessed with a direct pulp capping model, in which HS was delivered to exposed pulp tissue in rats. Gelatin sponges were loaded with either phosphate-buffered saline or 101–102 μg/mL HS and placed onto the pulp tissue. Following a 28-day period, tissues were investigated by histological analysis and micro–computed tomography imaging.
Results
HS treatment markedly increased expression levels of key endothelial and odontogenic genes, enhanced the formation of capillary-like structures, and promoted the deposition of mineralized matrices. Treatment of exposed pulp tissue with HS in the in vivo pulp capping study induced formation of capillaries and reparative dentin.
Conclusions
Exogenous HS effectively promoted vasculogenesis and dentinogenesis of DPSCs in vitro and induced reparative dentin formation in vivo, highlighting its therapeutic potential for pulp capping treatment.
期刊介绍:
The Journal of Endodontics, the official journal of the American Association of Endodontists, publishes scientific articles, case reports and comparison studies evaluating materials and methods of pulp conservation and endodontic treatment. Endodontists and general dentists can learn about new concepts in root canal treatment and the latest advances in techniques and instrumentation in the one journal that helps them keep pace with rapid changes in this field.