A parametric bootstrap approach for computing confidence intervals for genetic correlations with application to genetically determined protein-protein networks.

IF 3.3 Q2 GENETICS & HEREDITY
HGG Advances Pub Date : 2024-07-18 Epub Date: 2024-05-08 DOI:10.1016/j.xhgg.2024.100304
Yi-Ting Tsai, Yana Hrytsenko, Michael Elgart, Usman A Tahir, Zsu-Zsu Chen, James G Wilson, Robert E Gerszten, Tamar Sofer
{"title":"A parametric bootstrap approach for computing confidence intervals for genetic correlations with application to genetically determined protein-protein networks.","authors":"Yi-Ting Tsai, Yana Hrytsenko, Michael Elgart, Usman A Tahir, Zsu-Zsu Chen, James G Wilson, Robert E Gerszten, Tamar Sofer","doi":"10.1016/j.xhgg.2024.100304","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic correlation refers to the correlation between genetic determinants of a pair of traits. When using individual-level data, it is typically estimated based on a bivariate model specification where the correlation between the two variables is identifiable and can be estimated from a covariance model that incorporates the genetic relationship between individuals, e.g., using a pre-specified kinship matrix. Inference relying on asymptotic normality of the genetic correlation parameter estimates may be inaccurate when the sample size is low, when the genetic correlation is close to the boundary of the parameter space, and when the heritability of at least one of the traits is low. We address this problem by developing a parametric bootstrap procedure to construct confidence intervals for genetic correlation estimates. The procedure simulates paired traits under a range of heritability and genetic correlation parameters, and it uses the population structure encapsulated by the kinship matrix. Heritabilities and genetic correlations are estimated using the close-form, method of moment, Haseman-Elston regression estimators. The proposed parametric bootstrap procedure is especially useful when genetic correlations are computed on pairs of thousands of traits measured on the same exact set of individuals. We demonstrate the parametric bootstrap approach on a proteomics dataset from the Jackson Heart Study.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140211/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2024.100304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Genetic correlation refers to the correlation between genetic determinants of a pair of traits. When using individual-level data, it is typically estimated based on a bivariate model specification where the correlation between the two variables is identifiable and can be estimated from a covariance model that incorporates the genetic relationship between individuals, e.g., using a pre-specified kinship matrix. Inference relying on asymptotic normality of the genetic correlation parameter estimates may be inaccurate when the sample size is low, when the genetic correlation is close to the boundary of the parameter space, and when the heritability of at least one of the traits is low. We address this problem by developing a parametric bootstrap procedure to construct confidence intervals for genetic correlation estimates. The procedure simulates paired traits under a range of heritability and genetic correlation parameters, and it uses the population structure encapsulated by the kinship matrix. Heritabilities and genetic correlations are estimated using the close-form, method of moment, Haseman-Elston regression estimators. The proposed parametric bootstrap procedure is especially useful when genetic correlations are computed on pairs of thousands of traits measured on the same exact set of individuals. We demonstrate the parametric bootstrap approach on a proteomics dataset from the Jackson Heart Study.

计算遗传相关性置信区间的参数自举法,应用于基因决定的蛋白质-蛋白质网络。
遗传相关性是指一对性状的遗传决定因素之间的相关性。在使用个体层面的数据时,通常根据双变量模型规范进行估计,其中两个变量之间的相关性是可识别的,并且可以通过包含个体间遗传关系的协方差模型进行估计,例如使用预先指定的亲缘关系矩阵。当样本量较少、遗传相关性接近参数空间的边界以及至少一个性状的遗传率较低时,依赖遗传相关性参数估计的渐近正态性进行推断可能不准确。为了解决这个问题,我们开发了一种参数引导程序来构建遗传相关性估计值的置信区间。该程序模拟了一系列遗传率和遗传相关性参数下的配对性状,并使用了亲缘关系矩阵所包含的种群结构。遗传率和遗传相关性是通过近似形式、矩法和 Haseman-Elston 回归估计器估算的。当计算遗传相关性时,需要对在同一组个体上测量的数千个性状对进行计算时,所提出的参数自举程序就显得尤为有用。我们在杰克逊心脏研究的蛋白质组学数据集上演示了参数自举方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信