Effects of nano zinc oxide and nano chitosan on the taste masking paracetamol granules.

IF 2.4 4区 医学 Q3 CHEMISTRY, MEDICINAL
Tina Rashidi, Alireza Shakeri
{"title":"Effects of nano zinc oxide and nano chitosan on the taste masking paracetamol granules.","authors":"Tina Rashidi, Alireza Shakeri","doi":"10.1080/03639045.2024.2353096","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The purpose of this study is to investigate the taste masking of Paracetamol granules in the range of 250-850 µm, coated by two nanocomposites prepared from Eudragit<sup>®</sup> E100, nanozinc oxide, and nanochitosan, respectively, from 1 to 5% by the weight of the granules.</p><p><strong>Methods: </strong>In this study, Paracetamol granules were coated in several formulas with two different types of nanocomposites (polymeric and mineral) on two sizes of granules to reduce bitter taste and with the FBC method and pH-sensitive polymers (Eudragit<sup>®</sup> E100).</p><p><strong>Results: </strong>The effect of nanoparticles (Nano zinc oxide and Nanochitosan) on taste-masking Paracetamol was studied with dissolution-coated granules <i>in vitro</i> by simulating in the oral (pH 6.8) range. Based on the results of the studies, the rate of drug release was confirmed by the taste test, and the formulated granule with 5% nano-chitosan (F14) had the best bitter taste mask function of all samples. These results were also confirmed by scanning electron microscopy (SEM) analysis, which showed a smoother and more stable surface than the samples obtained from other formulations.</p><p><strong>Conclusion: </strong>In the comparison of the release of two types of nanocomposites in the dissolution test, it was shown that the type B granules of Paracetamol's 5% nano-chitosan-coated granule (F14) were released 99% less than Paracetamol's 5% nano-ZnO-coated granule (F11). and Paracetamol's 1% nano-chitosan-coated granule (F12) was released 91% less than Paracetamol's 1% nano-ZnO-coated granule (F9). The results showed that nano-chitosan-coated granules have better coverage of bitter taste instead of nano-ZnO.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2024.2353096","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The purpose of this study is to investigate the taste masking of Paracetamol granules in the range of 250-850 µm, coated by two nanocomposites prepared from Eudragit® E100, nanozinc oxide, and nanochitosan, respectively, from 1 to 5% by the weight of the granules.

Methods: In this study, Paracetamol granules were coated in several formulas with two different types of nanocomposites (polymeric and mineral) on two sizes of granules to reduce bitter taste and with the FBC method and pH-sensitive polymers (Eudragit® E100).

Results: The effect of nanoparticles (Nano zinc oxide and Nanochitosan) on taste-masking Paracetamol was studied with dissolution-coated granules in vitro by simulating in the oral (pH 6.8) range. Based on the results of the studies, the rate of drug release was confirmed by the taste test, and the formulated granule with 5% nano-chitosan (F14) had the best bitter taste mask function of all samples. These results were also confirmed by scanning electron microscopy (SEM) analysis, which showed a smoother and more stable surface than the samples obtained from other formulations.

Conclusion: In the comparison of the release of two types of nanocomposites in the dissolution test, it was shown that the type B granules of Paracetamol's 5% nano-chitosan-coated granule (F14) were released 99% less than Paracetamol's 5% nano-ZnO-coated granule (F11). and Paracetamol's 1% nano-chitosan-coated granule (F12) was released 91% less than Paracetamol's 1% nano-ZnO-coated granule (F9). The results showed that nano-chitosan-coated granules have better coverage of bitter taste instead of nano-ZnO.

纳米氧化锌和纳米壳聚糖对遮味扑热息痛颗粒的影响
目的 本研究的目的是调查扑热息痛颗粒的掩味效果,该颗粒的粒径在 250 到 850 µm 之间,分别用 Eudragit® E100、纳米氧化锌和纳米壳聚糖制备的两种纳米复合材料包衣,包衣量为颗粒重量的 1%到 5%。结果在体外模拟口服(pH 值为 6.8)范围内,研究了纳米颗粒(纳米氧化锌和纳米壳聚糖)对掩味扑热息痛颗粒溶出包衣的影响。根据研究结果,药物释放率通过味觉测试得到了证实,含有 5%纳米壳聚糖的配方颗粒(F14)在所有样品中具有最佳的苦味掩蔽功能。扫描电子显微镜(SEM)分析也证实了这些结果,与其他配方的样品相比,其表面更光滑、更稳定。结论 在溶出试验中比较了两种纳米复合材料的释放情况,结果表明,扑热息痛的 5%纳米壳聚糖包衣颗粒(F14)的 B 型释放量比扑热息痛的 5%纳米氧化锌包衣颗粒(F11)少 99%。而扑热息痛的 1%纳米壳聚糖包衣颗粒(F12)的释放量比扑热息痛的 1%纳米氧化锌包衣颗粒(F9)少 91%。结果表明,与纳米氧化锌相比,纳米壳聚糖包衣颗粒的苦味覆盖率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
82
审稿时长
4.5 months
期刊介绍: The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信