Arp2/3 mediated dynamic lamellipodia of the hPSC colony edges promote liposome-based DNA delivery.

IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
STEM CELLS Pub Date : 2024-07-08 DOI:10.1093/stmcls/sxae033
Michelle Surma, Kavitha Anbarasu, Arupratan Das
{"title":"Arp2/3 mediated dynamic lamellipodia of the hPSC colony edges promote liposome-based DNA delivery.","authors":"Michelle Surma, Kavitha Anbarasu, Arupratan Das","doi":"10.1093/stmcls/sxae033","DOIUrl":null,"url":null,"abstract":"<p><p>Cationic liposome-mediated delivery of drugs, DNA, or RNA plays a pivotal role in small molecule therapy, gene editing, and immunization. However, our current knowledge regarding the cellular structures that facilitate this process remains limited. Here, we used human pluripotent stem cells (hPSCs), which form compact colonies consisting of dynamically active cells at the periphery and epithelial-like cells at the core. We discovered that cells at the colony edges selectively got transfected by cationic liposomes through actin-related protein 2/3 (Arp2/3) dependent dynamic lamellipodia, which is augmented by myosin II inhibition. Conversely, cells at the core establish tight junctions at their apical surfaces, impeding liposomal access to the basal lamellipodia and thereby inhibiting transfection. In contrast, liposomes incorporating mannosylated lipids are internalized throughout the entire colony via receptor-mediated endocytosis. These findings contribute a novel mechanistic insight into enhancing therapeutic delivery via liposomes, particularly in cell types characterized by dynamic lamellipodia, such as immune cells or those comprising the epithelial layer.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228622/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxae033","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cationic liposome-mediated delivery of drugs, DNA, or RNA plays a pivotal role in small molecule therapy, gene editing, and immunization. However, our current knowledge regarding the cellular structures that facilitate this process remains limited. Here, we used human pluripotent stem cells (hPSCs), which form compact colonies consisting of dynamically active cells at the periphery and epithelial-like cells at the core. We discovered that cells at the colony edges selectively got transfected by cationic liposomes through actin-related protein 2/3 (Arp2/3) dependent dynamic lamellipodia, which is augmented by myosin II inhibition. Conversely, cells at the core establish tight junctions at their apical surfaces, impeding liposomal access to the basal lamellipodia and thereby inhibiting transfection. In contrast, liposomes incorporating mannosylated lipids are internalized throughout the entire colony via receptor-mediated endocytosis. These findings contribute a novel mechanistic insight into enhancing therapeutic delivery via liposomes, particularly in cell types characterized by dynamic lamellipodia, such as immune cells or those comprising the epithelial layer.

由 Arp2/3 介导的 hPSC 群体边缘动态片层促进脂质体 DNA 输送。
阳离子脂质体介导的药物、DNA 或 RNA 递送在小分子疗法、基因编辑和免疫中发挥着关键作用。然而,我们目前对促进这一过程的细胞结构的了解仍然有限。在这里,我们使用了人类多能干细胞(hPSCs),它们形成了紧凑的集落,集落的外围是动态活跃的细胞,核心是上皮样细胞。我们发现,集落边缘的细胞通过依赖于肌动蛋白相关蛋白2/3(Arp2/3)的动态薄片,选择性地被阳离子脂质体转染,而肌球蛋白II抑制剂会增强这种转染。相反,核心细胞在其顶端表面建立紧密连接,阻碍脂质体进入基底片层,从而抑制转染。与此相反,含有甘露糖基化脂质的脂质体通过受体介导的内吞作用在整个菌落中被内化。这些发现为通过脂质体加强治疗递送提供了新的机理见解,尤其是在以动态薄层为特征的细胞类型中,如免疫细胞或上皮细胞层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
STEM CELLS
STEM CELLS 医学-生物工程与应用微生物
CiteScore
10.30
自引率
1.90%
发文量
104
审稿时长
3 months
期刊介绍: STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology. STEM CELLS covers: Cancer Stem Cells, Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells, Regenerative Medicine, Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics, Tissue-Specific Stem Cells, Translational and Clinical Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信