{"title":"Cytochrome c electrochemical detection utilizing molecularly imprinted poly(3, 4-ethylenedioxythiophene) on a disposable screen printed carbon electrode","authors":"Ganesan Kaniraja , Murugesan Karthikeyan , Marimuthu Dhinesh Kumar , Periyasamy Ananthappan , Karuppiah Arunsunai Kumar , Vellasamy Shanmugaiah , Vairathevar Sivasamy Vasantha , Chandran Karunakaran","doi":"10.1016/j.ab.2024.115557","DOIUrl":null,"url":null,"abstract":"<div><p>Cytochrome <em>c</em> (cyt <em>c</em>) has been found to play a function in apoptosis in cell-free models. This work presents the creation of molecularly imprinted conducting poly(3, 4-ethylenedioxythiopene) (MIPEDOT) on the surface of a screen printed carbon electrode (SPCE) for cyt <em>c</em>. Cyt <em>c</em> was imprinted by electropolymerization due to the presence of an EDOT monomer hydrophobic functional group on SPCE, using CV to obtain highly selective materials with excellent molecular recognition ability. MIPEDOT was characterized by CV, EIS, and DPV using ferricyanide/ferrocyanide as a redox probe. Further, the characterization of the sensor was accomplished using SEM for surface morphological confirmation. Using CV, the peak current measured at the potential of +1 to −1 V (<em>vs</em>. Ag/AgCl) is linear in the cyt <em>c</em> concentration range from 1 to 1200 pM, showing a remarkably low detection limit of 0.5 pM (sensitivity:0.080 μA pM). Moreover, the applicability of the approach was successfully confirmed with the detection of cyt <em>c</em> in biological samples (human plasma). Similarly, our research has proven a low-cost, simple, and efficient sensing platform for cyt <em>c</em> detection, rendering it a viable tool for the future improvement of reliable and exact non-encroaching cell death detection.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724001015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Cytochrome c (cyt c) has been found to play a function in apoptosis in cell-free models. This work presents the creation of molecularly imprinted conducting poly(3, 4-ethylenedioxythiopene) (MIPEDOT) on the surface of a screen printed carbon electrode (SPCE) for cyt c. Cyt c was imprinted by electropolymerization due to the presence of an EDOT monomer hydrophobic functional group on SPCE, using CV to obtain highly selective materials with excellent molecular recognition ability. MIPEDOT was characterized by CV, EIS, and DPV using ferricyanide/ferrocyanide as a redox probe. Further, the characterization of the sensor was accomplished using SEM for surface morphological confirmation. Using CV, the peak current measured at the potential of +1 to −1 V (vs. Ag/AgCl) is linear in the cyt c concentration range from 1 to 1200 pM, showing a remarkably low detection limit of 0.5 pM (sensitivity:0.080 μA pM). Moreover, the applicability of the approach was successfully confirmed with the detection of cyt c in biological samples (human plasma). Similarly, our research has proven a low-cost, simple, and efficient sensing platform for cyt c detection, rendering it a viable tool for the future improvement of reliable and exact non-encroaching cell death detection.