Miguel Clavero, Javier Naves, María Lucena-Perez, Eloy Revilla
{"title":"Taxonomic inflation as a conservation trap for inbred populations","authors":"Miguel Clavero, Javier Naves, María Lucena-Perez, Eloy Revilla","doi":"10.1111/eva.13677","DOIUrl":null,"url":null,"abstract":"<p>Conservation is prioritized based on accepted taxa. As a consequence, a conservation incentive exists to emphasize inter-population differences to define taxa, potentially leading to taxonomic inflation. But stressing the uniqueness of threatened populations has the side effect of hindering conservation actions that promote inter-population gene flow, such as genetic rescue. These actions may be of critical importance for severely inbred populations involved in extinction vortices, for which an inflated taxonomy can become a conservation trap. Here, we exemplify this scenario with the western capercaillie (<i>Tetrao urogallus</i>, Phasianidae) population in the Cantabrian Mountains, described and legally listed as a subspecies not supported by recent molecular data. The Cantabrian capercaillie population is Critically Endangered after a long-lasting decline and a recent demographic collapse. It shows clear signs of inbreeding depression, including striking clutch size decreases as well as reduced hatchability and chick survival. This critical situation could be alleviated through a genetic rescue, but this possibility is hindered by inertias rooted in the putative uniqueness of the Cantabrian capercaillie. It had been previously argued that poor taxonomy could hamper conservation, through the oblivion of populations deserving, but not having, a taxonomic status. We show that taxonomic inflation can also become an obstacle for effective conservation.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11078296/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.13677","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Conservation is prioritized based on accepted taxa. As a consequence, a conservation incentive exists to emphasize inter-population differences to define taxa, potentially leading to taxonomic inflation. But stressing the uniqueness of threatened populations has the side effect of hindering conservation actions that promote inter-population gene flow, such as genetic rescue. These actions may be of critical importance for severely inbred populations involved in extinction vortices, for which an inflated taxonomy can become a conservation trap. Here, we exemplify this scenario with the western capercaillie (Tetrao urogallus, Phasianidae) population in the Cantabrian Mountains, described and legally listed as a subspecies not supported by recent molecular data. The Cantabrian capercaillie population is Critically Endangered after a long-lasting decline and a recent demographic collapse. It shows clear signs of inbreeding depression, including striking clutch size decreases as well as reduced hatchability and chick survival. This critical situation could be alleviated through a genetic rescue, but this possibility is hindered by inertias rooted in the putative uniqueness of the Cantabrian capercaillie. It had been previously argued that poor taxonomy could hamper conservation, through the oblivion of populations deserving, but not having, a taxonomic status. We show that taxonomic inflation can also become an obstacle for effective conservation.
期刊介绍:
Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.