Kumi Mesaki, Haruchika Yamamoto, Stephen Juvet, Jonathan Yeung, Zehong Guan, Akhi Akhter, Yan Yao, Cameron Dickie, Henna Mangat, Aizhou Wang, Gavin W Wilson, Andrea Mariscal, Jim Hu, Alan R Davidson, Benjamin P Kleinstiver, Marcelo Cypel, Mingyao Liu, Shaf Keshavjee
{"title":"CRISPR-Cas Genome Editing in <i>Ex Vivo</i> Human Lungs to Rewire the Translational Path of Genome-Targeting Therapeutics.","authors":"Kumi Mesaki, Haruchika Yamamoto, Stephen Juvet, Jonathan Yeung, Zehong Guan, Akhi Akhter, Yan Yao, Cameron Dickie, Henna Mangat, Aizhou Wang, Gavin W Wilson, Andrea Mariscal, Jim Hu, Alan R Davidson, Benjamin P Kleinstiver, Marcelo Cypel, Mingyao Liu, Shaf Keshavjee","doi":"10.1089/hum.2023.223","DOIUrl":null,"url":null,"abstract":"<p><p>The ongoing advancements in CRISPR-Cas technologies can significantly accelerate the preclinical development of both <i>in vivo</i> and <i>ex vivo</i> organ genome-editing therapeutics. One of the promising applications is to genetically modify donor organs prior to implantation. The implantation of optimized donor organs with long-lasting immunomodulatory capacity holds promise for reducing the need for lifelong potent whole-body immunosuppression in recipients. However, assessing genome-targeting interventions in a clinically relevant manner prior to clinical trials remains a major challenge owing to the limited modalities available. This study introduces a novel platform for testing genome editing in human lungs <i>ex vivo</i>, effectively simulating preimplantation genetic engineering of donor organs. We identified gene regulatory elements whose disruption via Cas nucleases led to the upregulation of the immunomodulatory gene interleukin 10 (<i>IL-10)</i>. We combined this approach with adenoviral vector-mediated <i>IL-10</i> delivery to create favorable kinetics for early (immediate postimplantation) graft immunomodulation. Using <i>ex vivo</i> organ machine perfusion and precision-cut tissue slice technology, we demonstrated the feasibility of evaluating CRISPR genome editing in human lungs. To overcome the assessment limitations in <i>ex vivo</i> perfused human organs, we conducted an <i>in vivo</i> rodent study and demonstrated both early gene induction and sustained editing of the lung. Collectively, our findings lay the groundwork for a first-in-human-organ study to overcome the current translational barriers of genome-targeting therapeutics.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11386987/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/hum.2023.223","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ongoing advancements in CRISPR-Cas technologies can significantly accelerate the preclinical development of both in vivo and ex vivo organ genome-editing therapeutics. One of the promising applications is to genetically modify donor organs prior to implantation. The implantation of optimized donor organs with long-lasting immunomodulatory capacity holds promise for reducing the need for lifelong potent whole-body immunosuppression in recipients. However, assessing genome-targeting interventions in a clinically relevant manner prior to clinical trials remains a major challenge owing to the limited modalities available. This study introduces a novel platform for testing genome editing in human lungs ex vivo, effectively simulating preimplantation genetic engineering of donor organs. We identified gene regulatory elements whose disruption via Cas nucleases led to the upregulation of the immunomodulatory gene interleukin 10 (IL-10). We combined this approach with adenoviral vector-mediated IL-10 delivery to create favorable kinetics for early (immediate postimplantation) graft immunomodulation. Using ex vivo organ machine perfusion and precision-cut tissue slice technology, we demonstrated the feasibility of evaluating CRISPR genome editing in human lungs. To overcome the assessment limitations in ex vivo perfused human organs, we conducted an in vivo rodent study and demonstrated both early gene induction and sustained editing of the lung. Collectively, our findings lay the groundwork for a first-in-human-organ study to overcome the current translational barriers of genome-targeting therapeutics.
期刊介绍:
Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.