Qiming Fu, Tao Xu, Chenggong He, Daomiao Wang, Meiling Liu and Chao Liu*,
{"title":"Machine Learning-Assisted Study of RENxC6–x-Doped Graphene as Potential Electrocatalysts for Oxygen Electrode Reactions","authors":"Qiming Fu, Tao Xu, Chenggong He, Daomiao Wang, Meiling Liu and Chao Liu*, ","doi":"10.1021/acs.langmuir.4c00803","DOIUrl":null,"url":null,"abstract":"<p >In the application of renewable energy, the oxidation–reduction reaction (ORR) and oxygen evolution reaction (OER) are two crucial reactions. Single-atom catalysts (SACs) based on metal-doped graphene have been widely employed due to their high activity and high atom utilization efficiency. However, the catalytic activity is significantly influenced by different metals and local coordination, making it challenging to efficiently screen through either experimental or density functional theory (DFT) calculations. To address this issue, this study employed a combination of DFT calculations and machine learning (DFT-ML) to investigate rare earth-modified carbon-based (REN<sub><i>x</i></sub>C<sub>6–<i>x</i></sub>) electrocatalysts. Based on computational data from 75 catalysts, we trained two ML models to capture the underlying patterns of physical properties and overpotential. Subsequently, the candidate catalysts were screened, leading to the discovery of four ORR catalysts, nine OER catalysts, and five bifunctional electrocatalysts, all of which were thoroughly validated for their stability. Lastly, by integrating the ML models with the SHAP analysis framework, we revealed the influence of atomic radius, Pauling electronegativity, and other features on the catalytic activity. Additionally, we analyzed the physicochemical properties of potential catalysts through DFT calculations. The revolutionary DFT-ML approach provides a crucial driving force for the design and synthesis of potential catalysts in subsequent studies.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"40 20","pages":"10726–10736"},"PeriodicalIF":3.9000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c00803","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the application of renewable energy, the oxidation–reduction reaction (ORR) and oxygen evolution reaction (OER) are two crucial reactions. Single-atom catalysts (SACs) based on metal-doped graphene have been widely employed due to their high activity and high atom utilization efficiency. However, the catalytic activity is significantly influenced by different metals and local coordination, making it challenging to efficiently screen through either experimental or density functional theory (DFT) calculations. To address this issue, this study employed a combination of DFT calculations and machine learning (DFT-ML) to investigate rare earth-modified carbon-based (RENxC6–x) electrocatalysts. Based on computational data from 75 catalysts, we trained two ML models to capture the underlying patterns of physical properties and overpotential. Subsequently, the candidate catalysts were screened, leading to the discovery of four ORR catalysts, nine OER catalysts, and five bifunctional electrocatalysts, all of which were thoroughly validated for their stability. Lastly, by integrating the ML models with the SHAP analysis framework, we revealed the influence of atomic radius, Pauling electronegativity, and other features on the catalytic activity. Additionally, we analyzed the physicochemical properties of potential catalysts through DFT calculations. The revolutionary DFT-ML approach provides a crucial driving force for the design and synthesis of potential catalysts in subsequent studies.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).