Hocine Nebair, Sami Zidelmel, Bachir Helifa, Samir Bensaid, Ibn Khaldoun Lefkaier
{"title":"Hardness and Ferrite Grain Size Evaluation of X70 Steel Using Magnetic Barkhausen Noise Method","authors":"Hocine Nebair, Sami Zidelmel, Bachir Helifa, Samir Bensaid, Ibn Khaldoun Lefkaier","doi":"10.1007/s10921-024-01073-w","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper, magnetic Barkhausen noise (MBN) measurements have been carried out to evaluate the hardness and ferrite grain size of API X70 steel. All samples were austenitized at 900–1200 °C for 0.5 h followed by air-cooling identically to develop different ferrite grain size. The microstructure examinations were determined by Scanning Electron Microscope (SEM). The average ferrite grain size in each sample was estimated using ImageJ open-source software. Hardness measurements were performed using durometer device. Measurements of MBN were conducted using MikroMach (Micromagnetic Materials Characterization) system. The microstructure observation shows that the increase in the austenization temperature (AUT) causes an increase in the ferrite grain size as well as their change in shape from polygonal to acicular. The results of mechanical tests showed that the increase in the austenization temperature leads to an increase in the hardness of the X70 steel. Actually, MBN method can be used to evaluate the changes in hardness and ferrite grain size in ferromagnetic materials. The sample with the lowest austenitic temperature has the highest Barkhausen noise amplitude (BNA); in contrast, the sample which contains the highest austenitic temperature has the lowest BNA; furthermore, when the austenization temperatures increases, the signal of the coercive field Hc shifts to the higher values of magnetic field. Additionally, BNA decreases, and Hc increases whenever hardness and ferrite grain size increases. In this way, a good correlation was found between MBN parameters, ferrite grain size, and hardness values. The realized experimental setup can be used for online evaluate steel microstructures and quality control of ferromagnetic materials in some industrial applications.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"43 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01073-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
In the present paper, magnetic Barkhausen noise (MBN) measurements have been carried out to evaluate the hardness and ferrite grain size of API X70 steel. All samples were austenitized at 900–1200 °C for 0.5 h followed by air-cooling identically to develop different ferrite grain size. The microstructure examinations were determined by Scanning Electron Microscope (SEM). The average ferrite grain size in each sample was estimated using ImageJ open-source software. Hardness measurements were performed using durometer device. Measurements of MBN were conducted using MikroMach (Micromagnetic Materials Characterization) system. The microstructure observation shows that the increase in the austenization temperature (AUT) causes an increase in the ferrite grain size as well as their change in shape from polygonal to acicular. The results of mechanical tests showed that the increase in the austenization temperature leads to an increase in the hardness of the X70 steel. Actually, MBN method can be used to evaluate the changes in hardness and ferrite grain size in ferromagnetic materials. The sample with the lowest austenitic temperature has the highest Barkhausen noise amplitude (BNA); in contrast, the sample which contains the highest austenitic temperature has the lowest BNA; furthermore, when the austenization temperatures increases, the signal of the coercive field Hc shifts to the higher values of magnetic field. Additionally, BNA decreases, and Hc increases whenever hardness and ferrite grain size increases. In this way, a good correlation was found between MBN parameters, ferrite grain size, and hardness values. The realized experimental setup can be used for online evaluate steel microstructures and quality control of ferromagnetic materials in some industrial applications.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.