A Solution Matrix by IEVP under the Central Principle Submatrix Constraints

IF 1.3 4区 数学 Q1 MATHEMATICS
Vineet Bhatt, Manpreet Kaur, I. Ahmed M. AL-Hammadi, Sunil Kumar
{"title":"A Solution Matrix by IEVP under the Central Principle Submatrix Constraints","authors":"Vineet Bhatt, Manpreet Kaur, I. Ahmed M. AL-Hammadi, Sunil Kumar","doi":"10.1155/2024/7908231","DOIUrl":null,"url":null,"abstract":"The <span><svg height=\"7.35473pt\" style=\"vertical-align:-0.3499303pt\" version=\"1.1\" viewbox=\"-0.0498162 -7.0048 17.063 7.35473\" width=\"17.063pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,9.432,0)\"></path></g></svg><span></span><svg height=\"7.35473pt\" style=\"vertical-align:-0.3499303pt\" version=\"1.1\" viewbox=\"19.9181838 -7.0048 6.703 7.35473\" width=\"6.703pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,19.968,0)\"><use xlink:href=\"#g113-111\"></use></g></svg></span> real matrix <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 8.15071 8.68572\" width=\"8.15071pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> is called centrosymmetric matrix if <span><svg height=\"10.2124pt\" style=\"vertical-align:-1.576501pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 19.289 10.2124\" width=\"19.289pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-81\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.658,0)\"></path></g></svg><span></span><svg height=\"10.2124pt\" style=\"vertical-align:-1.576501pt\" version=\"1.1\" viewbox=\"22.8711838 -8.6359 26.759 10.2124\" width=\"26.759pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.921,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,31.072,0)\"><use xlink:href=\"#g113-81\"></use></g><g transform=\"matrix(.013,0,0,-0.013,38.315,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.013,0,0,-0.013,46.466,0)\"></path></g></svg><span></span></span> where <svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 8.28119 8.8423\" width=\"8.28119pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g></svg> is permutation matrix with ones on cross diagonal (bottom left to top right) and zeroes elsewhere. In this article, the solvability conditions for left and right inverse eigenvalue problem (which is special case of inverse eigenvalue problem) under the submatrix constraint for generalized centrosymmetric matrices are derived, and the general solution is also given. In addition, we provide a feasible algorithm for computing the general solution, which is proved by a numerical example.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"24 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/7908231","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The real matrix is called centrosymmetric matrix if where is permutation matrix with ones on cross diagonal (bottom left to top right) and zeroes elsewhere. In this article, the solvability conditions for left and right inverse eigenvalue problem (which is special case of inverse eigenvalue problem) under the submatrix constraint for generalized centrosymmetric matrices are derived, and the general solution is also given. In addition, we provide a feasible algorithm for computing the general solution, which is proved by a numerical example.
中心原理子矩阵约束下的 IEVP 解矩阵
如果实矩阵的对角线(从左下角到右上角)上为 1,其他地方为 0,则该矩阵称为中心对称矩阵。本文推导了广义中心对称矩阵在子矩阵约束下左右逆特征值问题(逆特征值问题的特例)的可解条件,并给出了通解。此外,我们还提供了计算一般解的可行算法,并通过一个数值示例加以证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信