{"title":"Winter–spring minimum temperature variations inferred from tree-ring δ13C in southeastern China","authors":"Wenli Li, Feifei Zhou, Heng Zhang, Keyan Fang","doi":"10.1007/s11676-024-01742-6","DOIUrl":null,"url":null,"abstract":"<p>Long-term temperature variations inferred from high-resolution proxies provide an important context to evaluate the intensity of current warming. However, temperature reconstructions in humid southeastern China are scarce and particularly lack long-term data, limiting us to obtain a complete picture of regional temperature evolution. In this study, we present a well-verified reconstruction of winter-spring (January–April) minimum temperatures over southeastern China based on stable carbon isotopic (δ<sup>13</sup>C) records of tree rings from <i>Taxus wallichiana</i> var<i>. mairei</i> from 1860 to 2014. This reconstruction accounted for 56.4% of the total observed variance. Cold periods occurred during the 1860s–1910s and 1960s–1970s. Although temperatures have had an upward trend since the 1920s, most of the cold extremes were in recent decades. The El Niño-Southern Oscillation (ENSO) variance acted as a key modulator of regional winter-spring minimum temperature variability. However, teleconnections between them were a nonlinear process, i.e., a reduced or enhanced ENSO variance may result in a weakened or intensified temperature-ENSO relationship.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forestry Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11676-024-01742-6","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Long-term temperature variations inferred from high-resolution proxies provide an important context to evaluate the intensity of current warming. However, temperature reconstructions in humid southeastern China are scarce and particularly lack long-term data, limiting us to obtain a complete picture of regional temperature evolution. In this study, we present a well-verified reconstruction of winter-spring (January–April) minimum temperatures over southeastern China based on stable carbon isotopic (δ13C) records of tree rings from Taxus wallichiana var. mairei from 1860 to 2014. This reconstruction accounted for 56.4% of the total observed variance. Cold periods occurred during the 1860s–1910s and 1960s–1970s. Although temperatures have had an upward trend since the 1920s, most of the cold extremes were in recent decades. The El Niño-Southern Oscillation (ENSO) variance acted as a key modulator of regional winter-spring minimum temperature variability. However, teleconnections between them were a nonlinear process, i.e., a reduced or enhanced ENSO variance may result in a weakened or intensified temperature-ENSO relationship.
期刊介绍:
The Journal of Forestry Research (JFR), founded in 1990, is a peer-reviewed quarterly journal in English. JFR has rapidly emerged as an international journal published by Northeast Forestry University and Ecological Society of China in collaboration with Springer Verlag. The journal publishes scientific articles related to forestry for a broad range of international scientists, forest managers and practitioners.The scope of the journal covers the following five thematic categories and 20 subjects:
Basic Science of Forestry,
Forest biometrics,
Forest soils,
Forest hydrology,
Tree physiology,
Forest biomass, carbon, and bioenergy,
Forest biotechnology and molecular biology,
Forest Ecology,
Forest ecology,
Forest ecological services,
Restoration ecology,
Forest adaptation to climate change,
Wildlife ecology and management,
Silviculture and Forest Management,
Forest genetics and tree breeding,
Silviculture,
Forest RS, GIS, and modeling,
Forest management,
Forest Protection,
Forest entomology and pathology,
Forest fire,
Forest resources conservation,
Forest health monitoring and assessment,
Wood Science and Technology,
Wood Science and Technology.