Scale Dependence of Distributions of Hotspots

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Michael Wilkinson, Boris Veytsman
{"title":"Scale Dependence of Distributions of Hotspots","authors":"Michael Wilkinson,&nbsp;Boris Veytsman","doi":"10.1007/s10955-024-03272-1","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a random field <span>\\(\\phi ({\\textbf{r}})\\)</span> in <i>d</i> dimensions which is largely concentrated around small ‘hotspots’, with ‘weights’, <span>\\(w_i\\)</span>. These weights may have a very broad distribution, such that their mean does not exist, or is dominated by unusually large values, thus not being a useful estimate. In such cases, the median <span>\\({\\overline{W}}\\)</span> of the total weight <i>W</i> in a region of size <i>R</i> is an informative characterisation of the weights. We define the function <i>F</i> by <span>\\(\\ln {\\overline{W}}=F(\\ln R)\\)</span>. If <span>\\(F'(x)&gt;d\\)</span>, the distribution of hotspots is dominated by the largest weights. In the case where <span>\\(F'(x)-d\\)</span> approaches a constant positive value when <span>\\(R\\rightarrow \\infty \\)</span>, the hotspots distribution has a type of scale-invariance which is different from that of fractal sets, and which we term <i>ultradimensional</i>. The form of the function <i>F</i>(<i>x</i>) is determined for a model of diffusion in a random potential.\n</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"191 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-024-03272-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03272-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a random field \(\phi ({\textbf{r}})\) in d dimensions which is largely concentrated around small ‘hotspots’, with ‘weights’, \(w_i\). These weights may have a very broad distribution, such that their mean does not exist, or is dominated by unusually large values, thus not being a useful estimate. In such cases, the median \({\overline{W}}\) of the total weight W in a region of size R is an informative characterisation of the weights. We define the function F by \(\ln {\overline{W}}=F(\ln R)\). If \(F'(x)>d\), the distribution of hotspots is dominated by the largest weights. In the case where \(F'(x)-d\) approaches a constant positive value when \(R\rightarrow \infty \), the hotspots distribution has a type of scale-invariance which is different from that of fractal sets, and which we term ultradimensional. The form of the function F(x) is determined for a model of diffusion in a random potential.

Abstract Image

热点分布的规模依赖性
我们考虑一个 d 维的随机场 \(\phi ({\textbf{r}})\),它主要集中在小的 "热点 "周围,具有 "权重",\(w_i\)。这些权重可能具有非常广泛的分布,以至于它们的平均值不存在,或者被异常大的值所支配,因此不是一个有用的估计值。在这种情况下,大小为 R 的区域中总权重 W 的中值({\overline{W}}/)是权重的一个信息特征。我们用 \(\ln {\overline{W}}=F(\ln R)\) 来定义函数 F。如果 \(F'(x)>d\),热点的分布就会被最大的权重所支配。当\(F'(x)-d\)接近一个恒定的正值时,热点分布具有一种不同于分形集的标度不变量,我们称之为超维度。函数 F(x) 的形式是针对随机势中的扩散模型确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信