Complete classification of planar p-elasticae

IF 1 3区 数学 Q1 MATHEMATICS
Tatsuya Miura, Kensuke Yoshizawa
{"title":"Complete classification of planar p-elasticae","authors":"Tatsuya Miura,&nbsp;Kensuke Yoshizawa","doi":"10.1007/s10231-024-01445-z","DOIUrl":null,"url":null,"abstract":"<div><p>Euler’s elastica is defined by a critical point of the total squared curvature under the fixed length constraint, and its <span>\\(L^p\\)</span>-counterpart is called <i>p</i>-elastica. In this paper we completely classify all <i>p</i>-elasticae in the plane and obtain their explicit formulae as well as optimal regularity. To this end we introduce new types of <i>p</i>-elliptic functions which streamline the whole argument and result. As an application we also classify all closed planar <i>p</i>-elasticae.\n</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01445-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Euler’s elastica is defined by a critical point of the total squared curvature under the fixed length constraint, and its \(L^p\)-counterpart is called p-elastica. In this paper we completely classify all p-elasticae in the plane and obtain their explicit formulae as well as optimal regularity. To this end we introduce new types of p-elliptic functions which streamline the whole argument and result. As an application we also classify all closed planar p-elasticae.

Abstract Image

平面 p-elasticae 的完整分类
欧拉弹性是由固定长度约束下总曲率平方的临界点定义的,它的(L^p\)对应物被称为 p-弹性。在本文中,我们对平面内的所有 p-elasticae 进行了完全分类,并得到了它们的显式以及最优正则性。为此,我们引入了新型 p-elliptic 函数,简化了整个论证和结果。作为应用,我们还对所有封闭的平面 p-elasticae 进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信