Yves Garrabos, Carole Lecoutre, Samuel Marre, Inseob Hahn
{"title":"Crossover Master Model of the Equation-of-State for a Simple Fluid: Critical Universality.","authors":"Yves Garrabos, Carole Lecoutre, Samuel Marre, Inseob Hahn","doi":"10.1007/s10765-024-03359-7","DOIUrl":null,"url":null,"abstract":"<div><p>We present a new extended parametric equation-of-state model for thermodynamic properties and the correlation length for a simple fluid near its liquid–gas critical point. The model involves 16 universal parameters to perfectly match 10 leading universal amplitudes of the asymptotic Ising-like limit of the critical-to-classical crossover functions calculated by Garrabos and Bervillier [Phys. Rev. E 74,021113 (2006)] from the massive renormalization scheme. The universal values of 8 Ising-like amplitude combinations are then matched exactly. The closure of the construction of parameters is determined after a careful analysis of the intrinsic limitation of parametric equations to describe the universal features at the first order of the confluent corrections-to-scaling. In the asymptotic mean-field limit, the crossover master model also reproduces the mean-field amplitude combinations except for the susceptibility case. The new model is compared with the crossover parametric model previously developed by Agayan et. al [Phys. Rev. E 64, 02615 (2001)]. The residuals from comparison with the mean crossover functions of Garrabos and Bervillier are reported to define the application range of the crossover master model to any simple fluid for which the generalized critical coordinates of the liquid–gas critical point are known.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 6","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03359-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present a new extended parametric equation-of-state model for thermodynamic properties and the correlation length for a simple fluid near its liquid–gas critical point. The model involves 16 universal parameters to perfectly match 10 leading universal amplitudes of the asymptotic Ising-like limit of the critical-to-classical crossover functions calculated by Garrabos and Bervillier [Phys. Rev. E 74,021113 (2006)] from the massive renormalization scheme. The universal values of 8 Ising-like amplitude combinations are then matched exactly. The closure of the construction of parameters is determined after a careful analysis of the intrinsic limitation of parametric equations to describe the universal features at the first order of the confluent corrections-to-scaling. In the asymptotic mean-field limit, the crossover master model also reproduces the mean-field amplitude combinations except for the susceptibility case. The new model is compared with the crossover parametric model previously developed by Agayan et. al [Phys. Rev. E 64, 02615 (2001)]. The residuals from comparison with the mean crossover functions of Garrabos and Bervillier are reported to define the application range of the crossover master model to any simple fluid for which the generalized critical coordinates of the liquid–gas critical point are known.
期刊介绍:
International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.